
1

Rust后端编译器开发

杨岢瑞

Dec 16, 2025

Rust语言以其内存安全和极致性能著称，而这一切都离不开其编译器 rustc的精密设计。其中，后端编译器作
为整个编译流程的最后一道关口，负责将高阶中间表示（Intermediate Representation，简称 IR）转化为高
效的机器码。本节将首先概述 Rust编译器的整体架构，以便读者理解后端的位置和作用。Rust编译器的前端
主要包括解析器（parser）、名称解析器（resolver）和类型检查器（type checker），它们将 Rust源代码逐
步转化为高阶 IR（HIR），并进行借用检查等静态分析。随后，中端处理MIR（Mid-level IR），这是一个控制流
扁平化的表示形式，适合进行借用检查和初步优化。后端则从优化后的MIR开始，生成针对特定目标平台的机
器码，包括代码生成（codegen）、寄存器分配和指令调度等阶段。
后端编译器的核心作用在于桥接抽象的 Rust语义与底层硬件。从高阶 IR生成机器码的过程中，它需要执行平
台无关的优化，如内联和死代码消除，同时融入目标特定优化，例如 x86_64上的 AVX指令利用或 AArch64
的条件执行优化。这确保了 Rust的“零成本抽象”承诺：在不牺牲运行时性能的前提下，提供高级语言特性。
后端还负责处理 Rust特有的机制，如 panic传播和解引用检查，这些需要在生成的汇编中嵌入元数据支持。
为什么值得学习 Rust后端开发？首先，Rust的独特特性如借用检查器（borrow checker）和零成本抽象，
要求后端精确建模这些语义，这比传统 C++后端开发更具挑战性。其次，Rust编译器是完全开源的，社区活
跃，贡献一个新后端或优化 Pass能直接影响数百万开发者。最后，随着 RISC-V、WebAssembly等新兴架构
兴起，Rust急需更多后端支持，性能优化和新平台移植是热门领域。通过后端开发，你能深入理解现代编译技
术，并获得实际项目经验。
本文的目标读者是具备 Rust编程基础、对编译原理有兴趣的中高级开发者，前提知识包括 Rust语法、基本汇
编知识和 LLVM或 Cranelift的使用经验。文章结构从基础概念入手，逐步深入架构剖析、手动实践、高级优
化、真实案例、挑战解决方案，直至贡献指南。全文字数约 8000字，配以详细代码解读和调试技巧，结尾提供
完整 Demo项目链接。

1 2. Rust 编译器后端基础
要掌握 Rust后端开发，首先回顾整个编译流程。Rust源代码经过前端处理后，生成 HIR，然后降低为MIR，
这个过程可以用简单流程表示：Source→ HIR→MIR→ Optimized MIR→Machine IR→ Object Code。
MIR是后端的起点，它是一个三元组风格的 IR，每个基本块（block）包含一系列语句（statements）和终止
指令（terminators），如分支或返回。优化后的MIR进入后端，进行指令选择（instruction selection）和
代码生成。
后端的入口点在于从MIR到后端特定 IR的转换，主要由 codegen crate负责。这个 crate充当桥梁，定义
了 MirCodegen结构体，它封装了 MIR数据、目标描述和上下文信息。codegen会根据编译选项选择后端实
例，例如 LLVM或 Cranelift，并调用其 codegen_mir方法生成机器码。核心概念包括MachineIR，这是后



2 3. Rust后端架构深度剖析 2

端内部的低阶表示；TargetMachine，则描述特定 CPU架构，如 x86_64-unknown-linux-gnu，包括指针
宽度、整数类型大小等元数据。
后端的核心数据结构设计精巧。以MirCodegen为例，它是一个桥梁结构体，通常定义为 struct

MirCodegen<'tcx> { tcx: TyCtxt<'tcx>, ... }，其中 TyCtxt是 rustc的类型上下文，提供对所
有类型和符号的访问。Backend trait是后端接口的抽象，它要求实现者提供 codegen_mir、init_mod-
ule等方法，LLVM和 Cranelift都以此为基础。Target结构体则封装目标规格，如 struct Target {

llvm_target: String, pointer_width: u32, ... }，支持 x86_64、aarch64甚至 wasm32。
后端编译选项通过 rustc的-C flag控制，例如 rustc --target x86_64-unknown-linux-gnu -C opt-

level=3指定目标和优化级别。opt-level=3启用激进优化，后端会插入更多 Pass，如循环展开；同时，-C
backend=cranelift可切换后端。这些选项在 codegen中被解析为 TargetMachine的配置，影响 IR生成
和优化流水线。

2 3. Rust 后端架构深度剖析
Rust当前支持多种后端实现，其中 LLVM是默认生产后端，成熟且功能齐全，适用于大多数发布构建；
Cranelift则更注重快速编译和小型代码生成，已稳定支持开发模式；CGClang是实验性 C++后端，主要针
对WebAssembly。LLVM后端由 rustc_codegen_llvm模块实现，其结构分为 Context构建、Module
初始化和 Function生成三个阶段。首先，Context对应 LLVM的 LLVMContext，管理全局类型和元数据；
然后，Module封装整个编译单元，包含函数和全局变量；Function构建时，从MIR遍历每个 block，生成
LLVM IR的基本块，并集成 Rust特定 Pass，如monomorphizer（单态化器）以处理泛型。Rust的 LLVM
Pass还包括 debuginfo生成，确保借用检查的运行时验证。
Cranelift后端是学习后端开发的最佳选择，因为其架构简洁、文档丰富，且编译速度比 LLVM快 3-5倍。
cranelift-codegen crate的核心是 VCode（Virtual Code）和 CLIF IR格式。VCode表示虚拟寄存器分
配后的指令序列，CLIF（Cranelift IR）是一种文本化 SSA（Static Single Assignment）格式，便于调试。
例如，一个简单加法在 CLIF中表现为 s0 = iadd.i32.param(0), param(1)，后端会将其映射到机器指令。
Cranelift的优势在于模块化：前端解析MIR，中端进行寄存器分配，后端选择指令，支持自定义扩展。
开发新后端遵循标准流程：首先实现 Backend trait，提供 codegen_mir钩子；然后注册 Target，通过
rustc的 target规格 JSON文件定义；接着编写代码生成器，从MIR lowering到机器 IR；最后通过 rustc
的测试框架验证。整个过程强调增量性和可测试性，例如先支持 i32加法，再扩展到控制流。

3 4. 动手实践：开发简单后端
实践是后端开发的灵魂，本节基于 Cranelift实现一个最小后端，支持简单整数运算。环境搭建从克隆 rust仓
库开始：git clone https://github.com/rust-lang/rust.git，进入目录后运行 ./x.py setup配置
工具链，然后 ./x.py build --stage 1 library/std构建标准库。这只需 stage 1，避免完整构建耗时。
理解MIR结构至关重要。以简单函数 fn add(a: i32, b: i32) → i32 { a + b }为例，其MIR大致如
下（通过 rustc --emit=mir查看）：

1 mir_graph = {

bb0: {

3 _1 = _2 + _3; // 语句：加法运算



3 4. 动手实践：开发简单后端 3

return; // 终止：返回结果
5 }

}

这段MIR的 bb0块只有一个语句 _1 = _2 + _3，其中 _1是结果局部变量，_2和 _3是参数。这是三地址
码形式，符号 _表示临时值，便于优化。
实现最小后端的第一步是创建新 crate my_backend，依赖 cranelift-codegen。然后实现 Backend trait
的核心方法：

use cranelift::prelude::*;

2

impl Backend for MyBackend {

4 fn codegen_mir(&self, mir: &Mir, ctx: &CodegenContext) -> Result<CompiledCode> {

let mut builder = FunctionBuilder::new();

6 let mut func = Function::new();

let sig = self.signature(mir); // 从 MIR 推导函数签名
8

// 初始化 CLIF 函数
10 func.signature = sig.clone();

let mut idata = InternalFunctionData::new();

12 builder.func = func;

14 // 遍历 MIR 基本块
for (bb_idx, bb) in mir.basic_blocks().iter_enumerated() {

16 let clif_bb = builder.create_block();

builder.switch_to_block(clif_bb);

18

// 处理每个语句
20 for stmt in bb.statements.iter() {

match stmt.kind {

22 StatementKind::BinaryOp { op: BinOp::Add, lhs, rhs, dest } => {

let lhs_val = self.load_operand(&mut builder, lhs, ctx)?;

24 let rhs_val = self.load_operand(&mut builder, rhs, ctx)?;

let res = builder.ins().iadd(lhs_val, rhs_val); // 生成 CLIF iadd

26 builder.def_var(*dest, res); // 绑定到 MIR 局部变量
}

28 _ => unimplemented!(),

}

30 }

32 // 处理终止指令



4 5. 高级主题：优化与扩展 4

match bb.terminator().kind {

34 TerminatorKind::Return { value } => {

let ret_val = self.load_operand(&mut builder, value, ctx)?;

36 builder.ins().return_(abi::Sig::fastcall(), &[ret_val]);

}

38 _ => unimplemented!(),

}

40 }

42 // 完成构建并编译
builder.seal_all_blocks();

44 builder.finalize();

46 let codegen = cranelift::codegen::produce_blobs(&mut idata, &builder.func)?;

Ok(CompiledCode::from_blobs(codegen))

48 }

}

这段代码是后端的核心。首先，创建 FunctionBuilder和签名 sig，从MIR推导参数类型（如 i32对应
I32类型）。然后，为每个MIR基本块创建 CLIF block，switch_to_block设置当前块。语句处理遍历
bb.statements，对于 BinaryOp::Add，使用 builder.ins().iadd生成加法指令，类型为 i32则用 iadd.i32
（隐式）。load_operand是辅助函数，从 MIR操作数加载 CLIF值（如参数直接扩展为 param(0)）。变量绑定用
def_var，将 CLIF值存入虚拟寄存器。终止器 Return加载返回值并 emit return_指令。seal_all_blocks
确保块完整，最终 produce_blobs生成机器码 blob。这段代码仅支持加法，但展示了 MIR到 CLIF的完整映
射，扩展时只需添加match分支。
Rust核心特性处理是难点。以 Borrow Checking为例，它要求生成元数据追踪生命周期，在后端通过插入
landing pad（异常垫）实现；Zero-cost Abstractions依赖内联提示，在 CLIF中用 inline_hint标记函
数；Panic Handling需 unwind info，使用 Cranelift的 eh_frame生成异常表。这些在完整实现中通过
ctx.metadata()访问。
完整 Demo包括上述代码，加上测试：编写 test.rsfn main() { println!({}, add(1,2)); }，用 rustc

--target mytarget test.rs编译，验证汇编输出 add eax, ebx; ret。调试技巧如 RUST_LOG=debug

rustc --target mytarget -Zprint-mir打印MIR和 CLIF，便于比对。

4 5. 高级主题：优化与扩展
后端优化流水线从MIR lowering开始，经过寄存器分配、指令选择、窥孔优化（peephole），最终输出机器
码。Lowering将MIR的三地址码转为两地址码机器 IR，例如 a + b变为 add rax, rbx。
自定义优化 Pass通过MachinePass trait实现。以 Tail Call Optimization（尾调用优化）为例：

1 struct TailCallPass;



5 6. 真实世界案例研究 5

3 impl MachinePass for TailCallPass {

fn run(&mut self, func: &mut MachineFunction) -> bool {

5 let mut changed = false;

for bb in func.blocks_mut() {

7 if let Terminator::Call { target, .. } = &mut bb.terminator {

if self.is_tail_position(bb) {

9 // 替换为 jump

*target = self.find_tail_target(target).unwrap();

11 bb.terminator = Terminator::Jump(target);

changed = true;

13 }

}

15 }

changed

17 }

}

这段 Pass遍历函数块，检查 Call终止器是否在尾位置（无后续语句），若是则替换为 Jump，避
免栈帧分配。run方法返回是否修改，用于流水线迭代。注册 Pass只需在优化 pipeline中插入
pipeline.add_pass(Box::new(TailCallPass))。
多目标支持定义 TargetSpecification JSON，如指针宽度和栈对齐。跨平台挑战在于条件指令，例如 x86用
cmov，AArch64用 csel，通过 TargetMachine的 isa特征查询。
性能分析工具丰富。rustc --emit=mir输出MIR JSON，便于验证优化；cranelift-tools的 clif-util

dot input.clif生成 dot图可视化 IR；llvm-mca分析指令性能，如 llvm-mca output.s模拟 x86流水
线，报告吞吐量和延迟。

5 6. 真实世界案例研究
Cranelift后端的开发历程展示了 Rust后端的演进。最初为加速 rustc开发模式而生，其性能对比 LLVM显
著：编译速度提升 3-5倍，代码大小仅增加 10-20%，运行性能持平或略优。具体基准显示，LLVM设为 1x，
Cranelift编译速度达 3-5x，代码大小 1.1-1.2x，运行性能 0.95-1.05x。这得益于 Cranelift的线性扫描寄存
器分配和快速指令选择。
WebAssembly后端特殊性在于线性内存模型和 trap处理，CGClang通过 Clang驱动 wasm-ld链接。嵌
入式/RISC-V支持挑战多，如无浮点单元时的软浮点模拟和向量扩展（RVV）。社区优秀 PR如#98765优化了
AArch64的 SVE支持，通过自定义 Pass提升矩阵乘法 20%性能。

6 7. 挑战与解决方案
后端开发常见陷阱包括生命周期错误，因MIR不完整导致metadata缺失，解决方案是完整 emit borrowck
元数据；寄存器分配失败源于约束冲突，使用自定义 allocator如 graph coloring；优化失效常因 Pass顺序



7 8. 贡献指南与未来展望 6

错误，需依赖分析图排序。
性能调试流程：先用-Zprint-mir比对前后 IR，再 clif-util可视化，最后 llvm-mca测指令。测试策略分层：
unit测试单指令生成，integration测试完整函数，fuzz用 cargo-fuzz随机MIR输入。

7 8. 贡献指南与未来展望
为 Rust后端贡献，从 good-first-issue入手，分叉 rust-lang/rust仓库，本地 ./x.py test

src/librustc_codegen，提交 PR。热门领域包括 RISC-V向量扩展、AOT优化和插件系统。
学习资源推荐 rustc-dev-guide（中级，五星）、Cranelift文档（中级，四星半）和 LLVM Kaleidoscope教
程（高级，三星半）。

8 9. 结论
Rust后端开发不仅是技术挑战，更是贡献开源的机会。从简单 patch起步，你能推动语言边界。欢迎讨论，作
者 GitHub：example/rust-backend-demo（完整 Demo项目）。

9 附录
A.关键源码路径映射：rust/compiler/rustc_codegen_llvm、cranelift-codegen/src/。
B.常用 rustc内部 flag：-Zprint-mir、-Cbackend=cranelift。
C.参考文献：rustc-dev-guide.rust-lang.org、Cranelift GitHub。
D.完整 Demo：https://github.com/example/rust-backend-demo。


