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EFA: git clone https://github.com/rust-lang/rust.qgit, HEANBREIBIT ./x.py setup BCE
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1\mir_graph = {
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1= _2+ _3; // iBA: M*zE
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return; // £1k: R[OIZER
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XEBEMRBIbbORIRBE—MED 1 = 2 + 3, HP 1 ZEREHEE, 2 _3I25H. 2=t

B, /s _ ®KTeE, EFNnk.

LMD EIHIE—F ZCIEH crate my_backend, f&#i cranelift-codegen, $A/ESLI Backend trait

LAY Py

use cranelift::prelude: :*;

impl Backend for MyBackend {

fn codegen_mir(&self, mir: &Mir, ctx: &CodegenContext) -> Result<CompiledCode> {

let mut builder = FunctionBuilder::new();
let mut func = Function::new();

let sig = self.signature(mir); // M WMIR HEXRHEZ

/] #8R1E CLIF K%K
func.signature = sig.clone();
let mut idata = InternalFunctionData::new();

builder.func = func;

/] &FH MIR EZsR

for (bb_idx, bb) in mir.basic_blocks().iter_enumerated() {
let clif_bb = builder.create_block();
builder.switch_to_block(clif_bb);

/] RIBEMEG
for stmt in bb.statements.iter() {
match stmt.kind {
StatementKind: :BinaryOp { op: BinOp::Add, lhs, rhs, dest } => {
let lhs_val self.load_operand(&mut builder, lhs, ctx)?;

let rhs_val = self.load_operand(&mut builder, rhs, ctx)?;

let res = builder.ins().iadd(lhs_val, rhs_val); // 4B CLIF iadd

builder.def_var(*dest, res); // 48EZE MIR BITE

_ => unimplemented! (),

/] IBEIIES
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match bb.terminator().kind {
TerminatorKind: :Return { value } => {
let ret_val = self.load_operand(&mut builder, value, ctx)?;

builder.ins().return_(abi::Sig::fastcall(), &[ret_vall);

_ => unimplemented! (),

/] SERMIEHRIFE
builder.seal_all_blocks();
builder.finalize();

let codegen = cranelift::codegen: :produce_blobs(&mut idata, &builder.func)?;

Ok (CompiledCode: : from_blobs(codegen))
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landing pad (BE#) $2M; Zero-cost Abstractions {k#fiNEtR, 7 CLIF F/ inline_hint #Rig&K
#%; Panic Handling & unwind info, £ Cranelift B eh_frame £HSE &R, XEERELNHED
ctx.metadata() iAidl,
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4 5 BREH:. KHUSTE

FIRMMATIKEM MIR lowering 88, £idFFes20. 8% E. SiFLiLK (peephole), &&mHN23
18, Lowering # MIR BY=3hthS4% Nt itio4123 IR, %0 a + b I add rax, rbx.
BEXM Pass @i MachinePass trait S£¥l, LA Tail Call Optimization (EiAREMK) H4:

1| struct TailCallPass;
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impl MachinePass for TailCallPass {
fn run(&mut self, func: &mut MachineFunction) -> bool {
let mut changed = false;
for bb in func.blocks_mut() {
if let Terminator::Call { target, .. } = &mut bb.terminator {
if self.is_tail_position(bb) {

/] EA jump
*target = self.find_tail_target(target).unwrap();
bb.terminator = Terminator::Jump(target);

changed = true;

}

changed

}
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