Rust GiR4RiZeEH 45

et

Dec 16, 2025

Rust BEMEAGFREMREEREENT, MX—UIMBARFHRIEES ruste BIEEIRIT. HP, SHHIFERE
NEMREFRIENRE—EXO, AFESMAIEERT (Intermediate Representation, f&# IR) & AS
MEIN 238, ATHEELELR Rust fmIFBHVEEMRZEN, UEREEREHNUEMER. Rust FHiZRHFTIH
TEGIEEMES (parser). BFREMES (resolver) B ESE (type checker), EATE Rust JBEAREZE
FEREAEM IR (HIR), H#HITEAREEHTSON. MEE, FHLE MR (Mid-level IR), X2—MZEIR
REANRTR, EEHTERREMINLS M. EHUMRKEN MIR Fig, E£REHMEFEBRTFEIMN
2813, BEABEER (codegen). FHEH/IEMIESHESME.

EingmiZeEMiZ O ERET SRR Rust BXSREESH. NS IR £RVSRBAEREFR, ERERTTE
BLXBMA, WMABHMZEAIDERR, FENBABRSEMN, a0 x86_64 L AVX i5<FIAZ AArchb4d
BIEHHRITRK. XHRT Rust B9 “SHAHR” &iE: ERNEHSTIMENTIRT, RESKESHME.
BimE SR Rust 58 HIAE, 80 panic FHEMMASIBRE, XEFEEERTHEPRATHIESZF.
AT AERFES Rust FHALR? B%, Rust FIRKHSFMNMERKRZESE (borrow checker) MEHAHR,
EREHEHBEXEEN, XES C++ FinF LA EAMkMS. HX, Rust FiFBERLFEN, #HXE
X, W — P FEIRSAK Pass BEEEFMBBAALE. &5, MEE RISC-V. WebAssembly F#¢5eH
Mg, Rust REELEHZR, HEACNHTEEBERATME. BIEHAL, MERNERIARER
A, HREELFMBE LK,

AXHEMRER RS Rust FIEEM. WHEZEFREEXNBNIIRALE, FiRFIREIE Rust 8. E4LC
RENRA LLVM 5 Cranelift WEREZK. XELSHWMEBIRINF, BERNELIIN. FohLik. S&I7A
. BELRG. hERASR, BEERMIER. 2@XFHY 8000 F, MLUFAREAEMAIRNIEIE, SRR M
5t# Demo T HE %,

1 2. Rust 4Ri¥88/aimEtht

EE2{E Rust BIRAKL, BEDMEMNMRIFRIZ. Rust FRBIKIAHAIER, £/ HIR, ABRER MR,
XMIIRA LA EARIERT:. Source = HIR = MIR — Optimized MIR = Machine IR — Object Code,
MIR BEmMESR, ER—T=THNEN IR, §MEDSHR (block) BE—RYIIEG (statements) ML
8<% (terminators), WM XZFRE, MEEHN MIR #HNGIH, #{THE<LEE (instruction selection)
REBERK,

BHRIAOSRTETFM MIR 2I/FIREE IR BV5i%, =EMH codegen crate fas, XA crate TBHHFR, TX
T MirCodeqgen &1k, B©EHET MIR #iE. BfERT L TXER. codegen SIRERIFIXTILEFIRET
5, 30 LLVM 5 Cranelift, #FABE codegen_mir 53&E M85, ZOBEEIE MachinelR, X2/5

2 3. Rust [aim5RMRESI 2

IREBRERN R ; TargetMachine, NIFEIRISFE CPU 224, #0 x86_64-unknown-linux-gnu, %55t
RE. BECEANETHE,

BRI Z O EIE S IR 815, L MirCodegen Affl, ER— MR EMIK, @EE XN struct
MirCodegen<'tcx> { tcx: TyCtxt<'tox>, ... }, HEF TyCtxt 2 rustc MR FTX, 12HEFr
BEBEMFTSHIAIR, Backend trait REHZEOMNMER, BERILMEFREM codegen_mir. init_mod-
ule 7%, LLVM # Cranelift # LAt A E M, Target & AN 2 BARMAE, W struct Target {
1lvm_target: String, pointer_width: u32, ... }, &3#F x86_64. aarch64 EZE wasm32,
EimmIFIETEN ruste B9-C flag T4, /%0 rustc --target x86_64-unknown-linux-gnu -C opt-
level=3 8 BTN LS. opt-level=3 BRAMHKMI, BiRSIBENES Pass, WEIFREHF; B, -C
backend=cranelift BJY# G, XLEETE codegen F#EITA TargetMachine WEZE, 200 IR 46
MRk L,

2 3. Rust [FImZRHRESIM

Rust Bl FEMEHIIM, Hp LLVM BRIAEF GG, MABREF S, ERATAZHRHNE,;
Cranelift WEFERFRFM/NERBER, EREZFHLRN; CGClang BRI C++ Gk, TEft
3t WebAssembly, LLVM Gk rustc_codegen_Illvm &R, HLEH DA Context HE. Module
A F] Function £R=1"FE&. B, Context M LLVM B LLVMContext, BELFHEIMTEIE,;
$AfS, Module HEENRIESET, BARBEMLBEE,; Function #ER, M MIREBHE block, £
LLVM IR BB AR, HEM Rust $5E Pass, Il monomorphizer (B7#&es) LAMEZE!, Rust B9 LLVM
Pass £ 83#F debuginfo £5%, HRERICENIGITIICIE

Cranelift GitEF IEHAXNREEE, RAEEHEE. XEES, BHRFREL LLVM & 3-5
cranelift-codegen crate B#Z:0\2 VCode (Virtual Code) # CLIF IR #&=. VCode RTEIFFED
/R3S 5, CLIF (Cranelift IR) —fXZA{k SSA (Static Single Assignment) &=, FEFiEL,
g0, —MEEMNATE CLIF RIMA s0 = iadd.i32.param(0), param(l), ERSIGHMETEINEES.
Cranelift IABEFIERW: FilHET MIR, RIHHITEHFRIE, BRERES, IREEXT B,
FEMEmERINERTE: B Backend trait, &t codegen_mir $8F; FAGEM Target, B
rustc B9 target M JSON XHEX ; EERERBEM2E, M MIR lowering ZI¥188 IR; RE&ET rustc
ROMIRAEZRIOIE, B IR MM AN, FIMkRsF 32 IiE, B BEIESIR.

3 4 mhFXLEK: ALXERGEH

KLEREHALNRER, ATHET Cranelift TM—N&/\Gik, ZIFERBIEE, MREEMNRRE rust €
EFA: git clone https://github.com/rust-lang/rust.qgit, HEANBREIBIT ./x.py setup BCE
TESE, AR ./x.py build --stage 1 library/std WEIRERE, XRE stage 1, BRTEMEFEN,
B MIR EMEXEE, UEBEEH fn add(a: i32, b: i32) - i32 { a + b } AFl, HE MR KM

T (& rustc --emit=mir BF):

1\mir_graph = {
bb0O: {
1= _2+ _3; // iBA: M*zE

3 4. shFRE: ARERGER

return; // £1k: R[OIZER

20

22

24

26

28

30

32

XEBEMRBIbbORIRBE—MED 1 = 2 + 3, HP 1 ZEREHEE, 2 _3I25H. 2=t

B, /s _ ®KTeE, EFNnk.

LMD EIHIE—F ZCIEH crate my_backend, f&#i cranelift-codegen, $A/ESLI Backend trait

LAY Py

use cranelift::prelude: :*;

impl Backend for MyBackend {

fn codegen_mir(&self, mir: &Mir, ctx: &CodegenContext) -> Result<CompiledCode> {

let mut builder = FunctionBuilder::new();
let mut func = Function::new();

let sig = self.signature(mir); // M WMIR HEXRHEZ

/] #8R1E CLIF K%K
func.signature = sig.clone();
let mut idata = InternalFunctionData::new();

builder.func = func;

/] &FH MIR EZsR

for (bb_idx, bb) in mir.basic_blocks().iter_enumerated() {
let clif_bb = builder.create_block();
builder.switch_to_block(clif_bb);

/] RIBEMEG
for stmt in bb.statements.iter() {
match stmt.kind {
StatementKind: :BinaryOp { op: BinOp::Add, lhs, rhs, dest } => {
let lhs_val self.load_operand(&mut builder, lhs, ctx)?;

let rhs_val = self.load_operand(&mut builder, rhs, ctx)?;

let res = builder.ins().iadd(lhs_val, rhs_val); // 4B CLIF iadd

builder.def_var(*dest, res); // 48EZE MIR BITE

_ => unimplemented! (),

/] IBEIIES

34

36

38

40

42

44

46

48

4 5 a%EE: MUSTE 4

match bb.terminator().kind {
TerminatorKind: :Return { value } => {
let ret_val = self.load_operand(&mut builder, value, ctx)?;

builder.ins().return_(abi::Sig::fastcall(), &[ret_vall);

_ => unimplemented! (),

/] SERMIEHRIFE
builder.seal_all_blocks();
builder.finalize();

let codegen = cranelift::codegen: :produce_blobs(&mut idata, &builder.func)?;

Ok (CompiledCode: : from_blobs(codegen))

XEERBREHRNZO. B, 613 FunctionBuilder 1¥ & sig, M MIR #SS AR (90132 XK
132 X&), ARG, AED MIR &ZZAREIE CLIF block, switch_to_block & & L #iiR, EAAIRIEH
bb.statements, ¥F BinaryOp::Add, f#H builder.ins().iadd £mMMNAIES, HKEH i32 MA iadd.i32
(B23L) o load_operand EHBIEE, M MIR #2E¥NE CLIF & (MNSHEREY BHA param(0)). TELER
def_var, ¥ CLIF BENENS1EEE, &8 Return MEHGREIEF emit return_ 3%, seal_all_blocks
HIFIREE, R produce_blobs £MAN2SHE blob, XERREBNZHNE, BETRT MIR 2 CLIF A5
5, ¥ RERFERM match 7%,

Rust #ZOMFMERIBE S, UL Borrow Checking A5l, EERERTHIEBEREGER, TEmEIIEA
landing pad (BE#) $2M; Zero-cost Abstractions {k#fiNEtR, 7 CLIF F/ inline_hint #Rig&K
#%; Panic Handling & unwind info, £ Cranelift B eh_frame £HSE &R, XEERELNHED
ctx.metadata() iAidl,

522 Demo B1F LR, MEMK: &5 test.rstn main() { println!({}, add(1,2)); }, A rustc
--target mytarget test.rs #wi¥, WIEC4wHIH add eax, ebx; ret. MiA#ZIFU] RUST_LOG=debug
rustc --target mytarget -Zprint-mir ¥JEQ MIR #1 CLIF, EFLbXS,

4 5 BREH:. KHUSTE

FIRMMATIKEM MIR lowering 88, £idFFes20. 8% E. SiFLiLK (peephole), &&mHN23
18, Lowering # MIR BY=3hthS4% Nt itio4123 IR, %0 a + b I add rax, rbx.
BEXM Pass @i MachinePass trait S£¥l, LA Tail Call Optimization (EiAREMK) H4:

1| struct TailCallPass;

[

5 6. ARtHRRFIAR 5

impl MachinePass for TailCallPass {
fn run(&mut self, func: &mut MachineFunction) -> bool {
let mut changed = false;
for bb in func.blocks_mut() {
if let Terminator::Call { target, .. } = &mut bb.terminator {
if self.is_tail_position(bb) {

/] EA jump
*target = self.find_tail_target(target).unwrap();
bb.terminator = Terminator::Jump(target);

changed = true;

}

changed

}

XE Pass BARER, ECaAlRULRBREETRMNE (EELEM), a2 WEMR A Jump, &
FRRM DB run FIERE R EEN, BFRKLENR. M Pass REE M pipeline 1N
pipeline.add_pass(Box: :new(TailCallPass))o

ZBEIZIFENX TargetSpecification JSON, NI5H mEMZEITT. BT SMHETRMHIES, 190 x86 A
cmov, AArchB4 A csel, & TargetMachine B isa $EEif,

MEENMTTAFEE. rustc --emit=mir i MIR JSON, EFIIEMI; cranelift-tools B c1if-util
dot input.clif £A% dot BRI IR; llvm-mca 2SS MRE, %0 11vm-mca output.s &I x86 Ak
%, REBHLEMLER,

5 6. ESStHRZEFIRFR

Cranelift BIHNALZFRET T Rust FimpVERH, mAANME rustc AREATE, HMERENLE LLVM &
E: RFRERA 3-5 &, KIEAIMUEM 10-20%, BITHEFTFHEML. EFEEERR, LLVM A 1x,
Cranelift HiFREX 3-5x, KBAN11-1.2x, BITMHEE 0.95-1.05%, Xz T Cranelift WEMEFESEF
BOBEMRRIELERE,

WebAssembly S MEETFEERFERA trap 38, CGClang i@id Clang X&) wasm-Id §#%, #
AT/RISC-V ZHipkti %, WNTFRETNNIESEMMEET B (RVV). #HXMRFE PR WI#98765 ik T
AArch64 B9 SVE %#%, @3 BENX Pass 1#FHEMTE 20% MHEE,

6 7. hiASHERSGE

BEHREREHaEESERREIR, A MR FAREEH metadata ik, fRAEIETE emit borrowck
TR, FERPEEBRTYRIR, FHABEENX allocator il graph coloring; k¥ ERE Pass IfiF

7 8. TEEESRRREE 6

iR, FEBOTEHRF
MEERIRRAZ: SLA-Zprint-mir tLb3#EIE IR, B clif-util I, &E llvm-mca UiES. MiXERDE:
unit MIXLIELSEM, integration MIATTEER L, fuzz B cargo-fuzz BN MIR &N

7 8. TWEMEESARREE

7 Rust Gim & Mk, M good-first-issue N F, 43 X rust-lang/rust € F, 2 # . /x.py test
src/librustc_codegen, 13 PR, AT 1$UHEIE RISC-V mEY E. AOT MGG RS.

F SR BHEE rustc-dev-quide (F%%, BE). Cranelift Xt (4, MEH) M LLVM Kaleidoscope #
2 (Bk, =2%),

8 9. £ie

Rust EmA LR NEBEAN L, BERRMAFENNS. MER patch &8, (REEEMIESIAR. WL, F
£ GitHub: example/rust-backend-demo (5% Demo TH).

9 PR

A. XFERRDERZIRSY: rust/compiler/rustc_codegen_llvm. cranelift-codegen/src/o
B. M rustc RZE flag: -Zprint-mir. -Cbackend=cranelift,

C. 22 X#k: rustc-dev-quide.rust-lang.org. Cranelift GitHub,

D. 52¥ Demo: https://github.com/example/rust-backend-demo,

