WEZEH Web MBS PWIERS

BIEE
Dec 22,2025

Web N A S HIIER R EEMP LERZRAROZONE. MENESRENERERK, BHRIER

FKHREMEBRATE T NANBKRAIEY. 1RIE Verizon 1 2023 FHIBHBAETRS, SHRIEEXKR

SFTEMEEEHR 80% L, Ef OWASP Top 10 8 SIS ZIEERRK 57F175, HEZFN
Equifax SUEBREEMHSH 1.47 ZAFRRIERE. AXEEREMEMBSESAENANTERERE, BPHL
EMELe. IRNSHERIERS. ZIEBEEAT Node.js. Python. Java FEIHIER, HESRIRRER
B RIRXEEEEERE Web ALMIR, HITEZZHITINAIZIHIHERERIIRSE

1 BSHEIEEMETS

SHIIIE. BNASEEERE Web Z2M=HR%Z. SHEIE (Authentication) HIABFR &7, Hl&EIA
FEFMEZBIIE TREi]; ¥ (Authorization) REBFINR, Flilfat-based iFialiEH] (RBAC) ME
HREEMT 41, SIFEENARBERAFRE, FlM0i@E cookie I token #IFERIEMAMRERIE, &
REXBIEERBEINIE. T IWT WERE . ZERERINE (MFA) MURHHITZEE S Passkeys,
XLBEARENS, EEFETRMEE,

EIMER IR IR 2 RFAMES, $H STRIDE &% (Spoofing. Tampering. Repudiation. Information
Disclosure. Denial of Service. Elevation of Privilege) S BPRIERIE, REIRFIBENIE, FNH
T EEENEE (brute-force). EiFE%R (credential stuffing, MHEEHRIEEH#HESRIRES). SiEHMF
(session hijacking, @I & EX cookie). CSRF (BSukiEK{mi&) 1 XSS (BBukpAs). a0, BFIEEMEFA
SSEBIMLRERS, SHASHETR, SIHAEZNKH Have | Been Pwned E#EE, 2023 FIbRK T
SHHERWFCHE. BIEMER, FREEMTRIENEIFTINZBFENERE,

2 R RESMHINIESRN

RAFEMRRESEMIIENAL, HARFRMIER2FENMALRIL ReBHEFENZOEERABBAEE
90 Argon2id. bcerypt 3 PBKDF2, XLEHXEGIHE (salt) MEERREURIMF IR GPU iR, #
%= Argon2id 8 memory 64 MiB. iterations 3. parallelism 4, &% MD5 2% SHA1 FRZEEF,
ANRIFEENERP BB AEE—%. KERS (M1%55 12-128 fiI) M SQL/NoSQL ENBAIF, BT
reCAPTCHA g hCaptcha PEISFAHIEE Ao

RARERBERCHNENEERENRE KR, BRIEERENLREE, BAEERMEIRZEENER,
540 Node.js Y crypto.timingSafeEqual, SCILERZXFRFIET, EREMSFRAIEHR R, g1 5 RE
TEIRRE 1 0. 55 6 R 1 %k, #Bid 10 ki1 /N, 3R IP A ID ik, FrEfEHaEsI HTTPS, FHi&E HSTS

3 Bz’ 2

3k (Strict-Transport-Security: max-age=31536000; includeSubDomains; preload) FyLlEEKK T,
REFEECHEEBRETBERENKRSHF AL, 3T session cookie, i&E HttpOnly 5 XSS. Se-
cure 38 %] HTTPS. SameSite=Strict PFA$4 CSRF, AR 28 i A Redis 721i# session ID s H#A &

i, ¥ {userld: 123, expires: 1728000000}, JWT (JSON Web Tokens) BLREEE, HLEMWH
BaseB64(Header).Base64(Payload).Signature, £ HS256 (J#FZH) 3¢ RS256 (IEXHR) &FH. &
ELRBIEEEmAEL access token (15 9% . refresh token ###&l, LUKTE payload FHEr N JTI
(— ID) BAEMK &, Refresh token FERIGHE, REZE Redis WNFERHH,

ZRZINE (MFA) EERALZ2M, TOTP (BEFHEN—XERL) BRMITHE, FH speakeasy
(Node.js) = pyotp (Python) &£, HEZHLL Argon2 NEFELHIEE. WebAuthn (FIDO2) %iEHE
HZAMEYIRS, SMS/Email fEASEESZZ SIM £hiF20, LY, AR ZHREYE Authenticator
App, BRIKIEA 6 (i,

3 BRREREl

RNWBMEIHEREZERIF. BRIER CAPTCHA, NS ERET; REELULES User-Agent.
IP. Canvas 8 XM KX, FEI&EMAE MFA, ZEKREEER 12 L E. zxcvbn FEIRGEE (B%k
Mpassword1231), ZILEMARFI 10 MNALEE, REHREITEEHIN (NIST k3, HAFBIEEHHD),
BEBARRHEE,

RERSOIEAREHINEN B, FHNBIPRIRSES session HIGFRE token JTI MDA Redis 2&&8 (TTL
5 token @), Idle BISEIHIHOBE (setinterval X% /ping) EATIHTHALI, REEIERTIHEK
2iE (IP. VA, RETEER), ZIH—RITfEEsH.

SR B PRI Google. GitHub ¢ AuthO, M OAuth 2.0/0IDC #hil. R2EEEEIE PKCE (Zh7&
code challenge [H#ZIIE1#) . state 8B CSRF. &/)\k scope (1 openid email), EIEEEDTYUN
Keucloak Z#FBEX realm,

TEZEINERRAFK S, Passkeys EF WebAuthn FIDO2, EHATAERT, AHFAAA ARG, XiF Face
ID/Touch ID, Magic Links &% HMAC E&M— x5k (TTL15 2%, payload il baseB4(userld +
timestamp), RRE[UEIEEZEER.

4 AR5 IEmSRILRG

BmEIMLL Node.js + Express Afil, BAREKB: npm install express berypt jsonwebtoken
express-rate-limit cors, #Z0EM API I

const express = require('express’);

const berypt = require('becrypt');

const jwt = require('jsonwebtoken');

const ratelLimit = require('express-rate-limit');
const app = express();

app.use(express.json());

const bcryptSaltRounds = 12;

©

=

~
[

b

23

25

27

29

31

33

35

39

a1

43

45

47

4 miisSEEKIRG

const jwtSecret = process.env.JNT_SECRET; // E/ 256 {UBEHIZHH, MIFETEME

/] EREFREIDEG: 5 SHARE 5 RER=R
const loginLimiter = rateLimit({
windowMs: 5 * 60 * 1000,
max: 5,
message: 'AZERZE, BHEEER",
standardHeaders: true,

legacyHeaders: false,

DK

/] GEMRER
app.post('/register', async (req, res) => {

const { email, password } = req.body;

if (lemail || !password || password.length < 12) {
return res.status(400).json({ error: 'TXE@WN' });

}

try {

/1 KEREE—E (BRBIEETH)
const passwordHash = await berypt.hash(password, beryptSaltRounds);
/] ¥ENEIEEE: INSERT INTO users (email, password_hash) VALUES (?, ?)
res.status(201).json({ message: "EMAILT 1)

} cateh (err) {
res.status(500).json({ error: 'BRSEZ[EIR' });

}

DR

/] BRIHR
app.post('/login', loginLimiter, async (req, res) => {
const { email, password } = req.body;
try {
/1 MEHEREIREXAE

// const user = await db.getUserByEmail(email);

// if (luser || l!await bcrypt.compare(password, user.password_hash)) {

/| return res.status(401).json({ error: 'FTHEIL' });

11}
const payload = { userId: 123, jti: require('crypto').randomUUID() };

const accessToken = jwt.sign(payload, jwtSecret, { expiresIn: '16m' });

const refreshToken = jwt.sign({ userId: 123 }, jwtSecret, { expiresIn:

/| 7#fE refresh FEIEESK Redis

49

53

4 miisSEEKIRG 4

res.json({ accessToken, refreshToken });
} catch (err) {
res.status(500).json({ error: 'ARSZSJ]HIR' 1);
}
IR

ol

©

21

23

25

27

XERRBERIRIN T RS SIERNKEMER, #8 berypt.hash BL12 BRERMEMREF (R4skE CPU
MEEAZE, 5T ASIC F), RINEUEREIE NE LB TFiE, BRIHANA rateLimit FiElH, 12 IP REI=IE
M, A berypt.compare HITIERZEELY (REFER timingSafeEqual), &£RFERN accessToken
(& JTIBRER) MK refreshToken, LPREPE R EMRIZINEIREZLE, HARM CORS (app.use(cors({
credentials: true, origin: ‘https://yourdomain.com’ 1)) RHIEH. JWT ZHEMFIET=ME, HFEED
SRFNE, A HSM =z AWS KMS &1,

HilmsER React =ffl, /A localStorage 7 JWT, {Bffist cookie B5 XSS, BEX hook:

import { useState, useEffect } from 'react’;

import jwtDecode from 'jwt-decode’;

export function useAuth() {
const [token, setToken] = useState(localStorage.getItem('accessToken'));

const [user, setUser] = useState(null);

useEffect(() => {
if (token) {

try {
const decoded = jwtDecode(token);
setUser(decoded);
/] RIFRE 1 S EEER
const timelLeft = decoded.exp * 1000 - Date.now();
if (timeLeft < 60 * 1000) refreshToken();

} catch {
logout();

}

1
}, [token]);

const login = (newToken) => {
localStorage.setItem(' accessToken', newToken);
setToken(newToken);

bs

const refreshToken = async () => {

29

31

33

35

37

39

a1

43

45

47

49

5 nfE. BHHS5EM 5

const refresh = localStorage.getItem('refreshToken');

const res = await fetch('/refresh', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ refreshToken: refresh }),
credentials: 'include', // &JiX cookie

DR

if (res.ok) {
const { accessToken } = await res.json();
login(accessToken);

} else {
logout();

1

b

const logout = () => {
localStorage.clear();
setToken(null);
setUser(null);

b

return { user, login, logout };

}

Itt hook Y50 token Z{k, #i#F5 payload FKENAFER, ZHILIHANIAR /refresh ifm (FIRIIE refresh
FEHHT token), fEH credentials: ’include’ &i% cookie, localStorage 1X7% accessToken, refresh
7Z HttpOnly cookie F& %, EFrFER @auth0/authO-react aIfEif, EEEEFEENX MFA,

$4EE schema Ll PostgreSQL ffl, users &®7Zfi# id (UUID £#). email (—%35]). password_hash
(VARCHAR(255)). mfa_secret (BYTEA, 1l%). created_at # last_login. sessions &7z id. user_id
(5ME8). token_hash (P47 refresh). expires_at (TIMESTAMP). ip # user_agent, ZFEBEHS
EH B H.

5 IiE. Hit5EM

HESBIEGERTTHEH, BRAEERER, SERIN/EKE timestamp. IP. user-agent MR E
(MaxMind GeolP), token B3HEHTE append-only A&, TAH ELK Stack (Elasticsearch A&
#E. Kibana Ff{k). Sentry fiRiBEE. Prometheus $ElF (BREAMNE), BiRAZWNSENN IP EF,
£3% Email/SMS @XM AP #iko

REWFITEESENR (Burp Suite &R T . OWASP ZAP BohtiatE) FMARBEZE (SonarQube
BAOINSEEE). S50 GDPR EXR#ER/\VE. CCPA AFMIBRIL. SOC 2 BHitEHEBMEFMEREGH (H

£ 90 X).

RZ2MRIH R 3 EEEM . BV EHFIE token, SBEIAFEEZM. BRIZEMA, &HEA HSM 1R
FEH, BRMENTHE,

FAEEIL Top HBixEIEAXEMERE. 5L (30 Math.random() 45 token). BIFN session ID.
ZB#E Bhim fingerprint X EEEEFim IWT, 1EFBIRIF HTTPS A HSTS preload. ZLI5%E %
Argon2id. MFA £&& TOTP MX. REREISFEM IP K. FHitBEFRAIRN, ML, BEEEFLNE
. Redis &EBKTH R

6 %L

MERESHIIERRELIRE, BIAREREMIFERER. M&/) viable REEESL, FLH RN MFA Fisis, BI=]
KEZHHE. T—H1760: LW ER Node.js =fl, HERNXIFELELSENIR,

FIEHEFEFE OWASP Authentication Cheat Sheet. NIST SP 800-63B #(F & {18/, UK GitHub E
FEEEW node-express-jwt-auth Rl

7 FR

JACER: JWT J3 JSON Web Token, TOTP /3 Time-based One-Time Password, PKCE 3 Proof Key
for Code Exchange, TE%|F#zZE AuthO (FEEBRSS). Firebase Auth (Google &), Supabase (Ff
IR Firebase #M), &%&X#E5EE OWASP X145 Equifax 524,

