
1

PyTorch在移动和边缘设备上的部署

叶家炜

Dec 23, 2025

边缘计算和移动 AI的兴起源于对低延迟、隐私保护以及离线能力的迫切需求。在传统的云端 AI部署中，数据传
输带来的延迟往往难以满足实时应用场景，而将模型直接运行在设备端则能有效规避这些问题。同时，用户隐私
数据无需上传云端，进一步提升了安全性。PyTorch作为 AI开发领域的热门框架，以其动态图和灵活性深受
开发者青睐，但其在边缘部署上面临模型体积庞大、计算资源受限以及跨平台兼容性等挑战。本文旨在提供从
模型训练到边缘部署的全流程指南，针对初学者和中级开发者，分享实用工具和最佳实践。读者需具备基本的
PyTorch知识以及 Android或 iOS移动开发基础。

1 2. PyTorch 边缘部署生态概述
PyTorch的边缘部署生态由一系列核心工具栈构成，这些工具共同支撑从模型导出到运行的全链路。
TorchScript是 PyTorch原生模型序列化格式，支持 Android、iOS和 Linux平台，通过它可以将动态图转
换为静态图以提升执行效率。PyTorch Mobile则提供专为移动端优化的运行时，直接集成到 Android和 iOS
应用中。ExecuTorch作为 PyTorch 2.0之后的下一代运行时，针对嵌入式设备设计，具有更小的二进制体积
和更低的内存占用。此外，ONNX格式允许跨框架导出，并搭配相应运行时支持多平台部署，而 TorchServe
及其移动变体则适用于服务器和边缘的服务化场景。整个部署流程可概括为训练模型、进行优化、导出格式、集
成到应用、运行推理并持续调优性能，这一流程确保了从开发到生产的顺畅过渡。

2 3. 模型准备与优化
模型优化是边缘部署的基础，其中量化技术尤为关键。通过将浮点权重转换为 INT8或 FP16格式，可以显著减
少模型大小和计算量。PyTorch的 torch.quantization模块支持动态和静态量化两种模式。以动态量化为
例，它在推理时实时量化激活值，而权重预先量化。这种方法简单易用，适用于快速原型验证。以下是动态量化
的示例代码：

1 import torch

import torch.quantization

3 model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True)

model.eval()

5 model.qconfig = torch.quantization.get_default_qconfig('fbgemm')

torch.quantization.prepare(model, inplace=True)

7 # 校准数据模拟
calib_data = torch.randn(10, 3, 224, 224)



3 4. 平台特定部署指南 2

9 for data in calib_data:

model(data)

11 quantized_model = torch.quantization.convert(model, inplace=False)

这段代码首先加载预训练的 ResNet-18模型，并设置为评估模式。然后配置量化方案，使用 fbgemm后端适
合 x86架构。prepare函数插入量化节点，之后通过校准数据（如随机生成的图像张量）收集统计信息，最终
convert函数完成量化转换。量化后模型大小可减少 4倍左右，但需注意精度损失，可通过 Top-1准确率评估。
剪枝和知识蒸馏进一步优化模型，前者移除冗余权重，后者用大模型指导小模型训练。对于 TorchScript导出，
有两种主要方法：torch.jit.trace通过示例输入追踪计算图，适合无控制流的模型；torch.jit.script

则编译 Python代码，支持 if-else等逻辑，但需注解复杂函数。选择取决于模型特性。以 torch.jit.trace

导出 CNN模型为例：

1 model = MyCNN()

model.eval()

3 example_input = torch.randn(1, 3, 224, 224)

traced_model = torch.jit.trace(model, example_input)

5 traced_model.save("model.pt")

这里定义自定义 CNN模型，传入示例输入进行追踪，生成静态图并保存为 .pt文件。常见问题包括控制流不支
持，可用 script解决；动态形状则需固定输入尺寸或使用 padding处理。
PyTorch 2.1引入的 ExecuTorch进一步提升边缘性能，其优势在于支持更多算子、更小二进制和低内存占用。
导出流程使用 torch.export：

1 import torch.export

model = MyModel()

3 example_args = (torch.randn(1, 3, 224, 224),)

exported_program = torch.export.export(model, example_args)

5 exported_program.save("model.ep")

此代码捕获模型与输入的联合表示，生成 .ep文件，支持后续 AOT编译，适用于资源极度受限的设备。

3 4. 平台特定部署指南

3.1 4.1 Android 部署（PyTorch Mobile）

在 Android上部署需先搭建环境，包括 Android Studio、NDK，并通过 Gradle添加 PyTorch Mobile AAR
依赖。集成步骤从加载 TorchScript模型开始，使用 Module.load从 assets读取模型文件。随后进行输入
预处理，将 Bitmap转换为 Tensor，并执行推理。完整图像分类示例代码如下：

1 Module module = Module.load(assetFilePath(this, "model.pt"));

Tensor inputTensor = ImageUtils.bitmapToFloat32Tensor(bitmap, 224, 224, 3);

3 IValue inputs = IValue.from(inputTensor);

Tensor outputTensor = module.forward(IValue.from(inputs)).toTensor();

5 float[] scores = outputTensor.getDataAsFloatArray();



4 5. 高级优化与性能调优 3

这段 Java代码首先加载模型，然后利用工具函数将图像转换为 normalized Float32 Tensor（尺寸
224×224，通道 3）。forward方法接收 IValue包装的输入，返回输出 Tensor，最后提取概率分数进行分类
（如 argmax取 Top-1）。为优化性能，可启用 NNAPI委托加速 GPU/NPU，或通过 JNI最小化 Java-Kotlin桥
接开销。

3.2 4.2 iOS 部署（PyTorch Mobile）

iOS部署通过 CocoaPods集成 LibTorch-Core，在 Xcode中配置后即可使用。通过 MobileModule.loadModel

加载模型，并处理输入 Tensor。Swift示例代码如下：

1 let module = try MobileModule.loadModel(modelPath: modelPath)

let inputTensor = MobileTensor.fromBlob(blob: inputBlob, shape: [1, 3, 224, 224])

3 let output = try module.forward(input: [MobileArgument(inputTensor)]).get<

↪→ MobileTensor>(0)

let scores = output.multiDimArray()!.data.floats

此代码加载模型，从 Blob数据创建输入 Tensor（需预先从 UIImage转换），调用 forward执行推理，并从
输出中提取浮点数组。性能提升可通过转换为 CoreML格式实现：使用 coremltools将 TorchScript导出为
.mlmodel，集成Metal或 ANE加速，推理速度可提升 2-3倍。

3.3 4.3 嵌入式设备（Raspberry Pi / Microcontrollers）

对于 Raspberry Pi等 Linux ARM设备，ExecuTorch通过 pip install executorch安装，支持语音识
别等任务。微控制器如 STM32或 ESP32受限于内存，仅支持核心算子，通过 XLA后端编译生成的 C++代码
运行。

4 5. 高级优化与性能调优
硬件加速是性能关键。在 Android上，PyTorch Mobile通过 NNAPI委托调用 GPU或 NPU；iOS使
用 CoreML集成 ANE和Metal；边缘 NPU如 Qualcomm的则依赖 ExecuTorch后端。基准测试采用
TensorFlow Lite Benchmark工具结合 PyTorch Profiler，关注延迟、内存、功耗和 Top-1准确率等指标。
常见瓶颈包括内存爆炸，可通过设置 Batch=1和静态形状解决；冷启动慢则用 AOT编译预热。

5 6. 实际案例与最佳实践
在移动图像分类案例中，将MobileNetV3导出为 TorchScript并部署到 Android，量化后模型大小降至
10MB，推理延迟 20ms，对比浮点版精度损失小于 1%。边缘实时目标检测则将 YOLOv5转为 ONNX，再用
ExecuTorch在 Jetson Nano上运行，达到 30 FPS。最佳实践包括控制模型大小低于 50MB、推理延迟低
于 30ms，使用 Git LFS版本控制模型，并集成 Torch Hub到 CI/CD管道。



6 7. 挑战与未来展望 4

6 7. 挑战与未来展望
当前挑战包括算子支持不全、动态形状处理困难以及跨平台一致性问题。未来，PyTorch 2.x通过 TorchDy-
namo和 ExecuTorch扩展生态，FBGEMM/TVM集成深化硬件支持，联邦学习也将释放边缘潜力。

7 8. 结论与资源
PyTorch边缘部署提供从 TorchScript到 ExecuTorch的完整路径，开发者可据需选择。立即实践官
方 GitHub示例仓库。进一步资源包括 pytorch.org/mobile文档、pytorch.org/executorch页面、
github.com/pytorch/mobile示例以及 PyTorch Forums社区。
附录：完整代码仓库见 github.com/pytorch/android-demo。FAQ示例：量化精度下降时，使用 QAT（量
化感知训练）在训练中模拟量化误差，或增加校准数据集大小。


