
1

在遗留 Rails单体应用中构建 AI代理

杨岢瑞

Dec 26, 2025

遗留 Rails单体应用在企业中广泛存在，这些应用往往经历了多年的迭代，积累了丰富的业务逻辑，但也面临代
码老化、维护成本高企以及扩展困难等问题。代码库中充斥着过时的 Gem依赖，数据库模型虽成熟却难以适应
现代需求，而集成新技术时常常遭遇安全隐患和性能瓶颈。与此同时，AI代理作为一种新兴技术迅速崛起，它基
于大型语言模型如 OpenAI GPT或 Anthropic Claude，能够自主感知环境、规划行动并调用工具执行复杂任
务，支持多模态交互。这种代理不仅仅是简单的聊天机器人，而是具备决策能力的自治系统。在遗留 Rails应用
中构建 AI代理，具有显著优势：它能提升开发者和运营团队的生产力，实现现代化改造，同时支持渐进式演进，
无需进行破坏性的大规模重构。通过代理，Rails应用可以自动化处理用户查询、数据分析和后台任务，逐步注
入智能能力。
本文的目标是提供一套实用、可操作的指南，帮助有 3年以上 Rails经验的中高级开发者，在不破坏现有系统的
前提下集成 AI代理。读者定位于那些熟悉遗留系统维护的工程师，他们可能正为老旧代码烦恼，却希望借助 AI
实现低风险升级。文章将从 AI代理的概念入手，逐步推进到环境搭建、架构设计、逐步实现、实战案例、挑战
应对以及高级主题，最后给出行动建议。整个过程强调实践导向，确保每一步都能在真实项目中落地。

1 AI 代理基础概念
AI代理本质上是一个基于大型语言模型的自治系统，它能够感知输入环境、通过规划器制定行动方案，并调用专
用工具执行任务，最终输出结果或迭代优化。核心组件包括 LLM作为大脑，提供推理能力；工具集成层，用于
连接外部系统如数据库或 API；内存机制，分短期内存用于当前对话上下文和长期内存用于历史知识积累；规划
器则采用 ReAct模式，即反复执行「推理（Reason）+行动（Act）」循环，直到任务完成。这种设计让代理
从被动响应转向主动解决问题，例如在 Rails应用中自动查询订单并生成报告。
将 AI代理集成到传统 Rails应用具有必要性，因为遗留 Rails的优势在于业务逻辑完整和数据模型成熟，这些
是 AI训练数据难以匹敌的宝贵资产。然而，挑战同样明显：旧版 Gem可能不支持现代 Ruby特性，API接口
不规范，安全漏洞频发。通过代理，我们可以将这些痛点转化为机会，让 AI作为中间层桥接旧系统与新功能。
推荐的技术栈包括使用 OpenAI API或 LangChain Ruby作为 LLM接入层，因为它们易于集成且稳定性高；
LlamaIndex或 LangGraph的 Ruby适配用于构建代理抽象，提供工具调用和状态管理；Rails侧则依赖
Sidekiq或 ActiveJob处理异步任务，确保代理运行不阻塞主应用。

2 准备工作：评估与环境搭建
在着手构建前，首先评估遗留 Rails应用的状态。检查 Ruby版本是否达到 2.7或更高，Rails版本至少为 5，
以确保兼容现代 Gem。识别集成点，如现有 Controller或 Service中的业务逻辑、数据库模型以及外部 API



3 设计 AI代理架构 2

调用。同时，进行安全审计：使用 Rails Credentials管理 API Key，避免硬编码；实施 Rate Limiting防止
滥用。
项目环境搭建从更新 Gemfile开始，添加核心依赖。以下是示例 Gemfile片段，这个配置引入了 OpenAI客
户端、Sidekiq用于后台任务，以及 LlamaIndex的 Ruby适配（或自定义 wrapper）。解读这段代码：gem

'openai'提供官方 Ruby客户端，支持聊天完成和工具调用 API；gem 'sidekiq'启用 Redis驱动的队列
系统，适合代理的长时任务；gem 'llama_index'（假设社区适配）封装了索引和检索功能，便于后续 RAG
集成。安装后运行 bundle install，并配置环境变量如 OPENAI_API_KEY和 RAILS_ENV。可选地，使用
Docker容器化应用，提升隔离性和可移植性，例如通过 Dockerfile定义多阶段构建，确保依赖一致。

1 gem 'openai'

gem 'sidekiq'

3 gem 'llama_index' # 或自定义 wrapper

3 设计 AI 代理架构
AI代理架构采用分层设计，从高层视角看，Rails单体应用通过 Controller或Webhook输入任务，流向 AI
Agent Service，该服务调用 LLM并协调工具，最终回写数据到 DB或外部 API。分层包括输入层负责解析用
户请求，代理核心执行规划循环，工具层封装 Rails服务，输出层生成响应。这种设计确保了松耦合，遗留代码
无需改动。
代理组件中，规划器采用 ReAct模式：代理先观察输入，推理下一步行动，调用工具执行，然后基于结果重复
循环，直到任务解决。工具定义是将 Rails服务封装为可调用函数，例如查询用户数据或发送邮件，这些工具通
过 JSON Schema描述参数给 LLM。内存管理使用 Redis存储短期上下文（如当前对话），PostgreSQL的
JSONB字段存长期记忆，支持复杂查询。
与 Rails集成有三种模式：在 Service Layer中注入代理增强业务逻辑；通过 Sidekiq Job异步运行长任务；
新增 API Endpoint如 /ai/agent支持外部触发。每种模式根据场景选择，确保渐进式引入。

4 逐步实现指南

4.1 第一步：基础 LLM 调用

实现从创建 Ai::Client服务类开始。这个类封装 OpenAI调用，提供简单接口。以下代码定义了 chat方法，
使用 OpenAI客户端发送提示。详细解读：OpenAI::Client.new初始化客户端，默认从环境变量读取 API
Key；chat方法接受 parameters哈希，指定 gpt-4o模型（高效且支持工具调用），messages数组模拟对
话，其中 {role: user, content: prompt}是用户输入。调用后返回流式或完整响应，可进一步解析。这个
基础封装为后续代理循环奠基，避免在多处重复配置。

1 class Ai::Client

def chat(prompt)

3 OpenAI::Client.new.chat(parameters: {

model: "gpt-4o",

5 messages: [{role: "user", content: prompt}]



4 逐步实现指南 3

})

7 end

end

4.2 第二步：构建工具集

工具集是代理能力的延伸，将 Rails逻辑封装为独立类。以 UserQueryTool为例，它接受查询参数，从数据
库检索用户。代码解读：call方法是工具入口，接收 query字符串，使用 ActiveRecord的 where子句以
ILIKE实现模糊匹配（忽略大小写），limit(10)防止结果过多。这个工具后续通过 LLM的函数调用机制触发，
LLM会根据任务生成参数如 {query: John}，工具执行后返回结构化数据如用户列表 JSON，提升代理的精确
性。类似地，可构建 EmailTool，调用 ActionMailer发送通知。

class UserQueryTool

2 def call(query)

User.where("name ILIKE ?", "%#{query}%").limit(10)

4 end

end

4.3 第三步：组装完整代理

完整代理在 AiAgent类中组装，集成 LLM、工具和 ReAct循环。以下 Controller示例展示集成：在 process

动作中，实例化代理传入工具数组，调用 run执行任务，返回 JSON结果。解读代理内部：run方法初始化
LLM客户端，进入循环⸺发送当前状态给 LLM，解析工具调用（如 {name: UserQueryTool, arguments:

{...}}），执行对应工具，更新观察状态，直至 LLM输出「任务完成」。Controller捕获结果渲染，异常时
fallback到默认响应。这个设计让代理自包含，可轻松测试和扩展。

1 class AiAgentsController < ApplicationController

def process

3 agent = AiAgent.new(tools: [UserQueryTool.new])

result = agent.run(params[:task])

5 render json: { result: result }

end

7 end

4.4 测试与调试

测试分层进行：使用 RSpec编写单元测试，mock工具输出验证逻辑；端到端测试结合 Capybara模拟用户
交互，mock LLM响应确保确定性。日志采用 Lograge精简输出，并记录代理的决策链，如「Observe: 用户
查询订单→ Think: 调用 OrderTool→ Act: 执行查询」。



5 实战案例：遗留 Rails中的 AI客服代理 4

5 实战案例：遗留 Rails 中的 AI 客服代理
考虑一个遗留电商 Rails应用，用户通过 Telegram或 Slack Webhook咨询订单状态。AI客服代理接收消
息作为输入，工具包括 OrderLookupTool（查询订单表）、RefundTool（处理退款）和 NotifyAdminTool

（Slack通知管理员）。代理运行 ReAct：先检索订单，若异常则通知管理员，最后生成自然语言回复如「您的
订单 #123已发货，预计 3天到达」。这个案例将代理部署为 Sidekiq Job，输入Webhook触发异步处理。
性能优化使用 Redis缓存常见查询，如订单状态哈希键 TTL 1小时，减少 DB负载；批量 LLM调用合并多工
具请求，降低 Token消耗。部署上，Heroku或 Railway支持一键上线，New Relic监控 Rails指标，结合
LLM观测工具追踪代理成功率和延迟。

6 挑战与最佳实践
遗留代码兼容是首要挑战，可用Monkey Patch临时扩展旧类，或 Adapter Pattern包装接口。成本控制
通过 Token限额和规则基 fallback实现，例如查询超 1000 Token时切换关键词匹配。安全性强调输入
Sanitize和工具 RBAC，仅授权必要操作。幻觉问题通过 RAG缓解：检索 Rails文档验证输出，并加验证层检
查事实准确性。
最佳实践包括渐进集成，从简单数据查询起步逐步到决策任务；部署 Prometheus + Grafana监控代理成功
率；A/B测试对比 AI与人工路径；使用 Git分支隔离 AI代码，便于回滚。

7 高级主题
多代理协作引入 Supervisor Agent，协调子代理如查询代理和通知代理，通过状态机分发任务。RAG集成使
用 PG Vector扩展 PostgreSQL，存储 Rails模型文档作为向量，提升查询准确性：嵌入用户问题，检索相似
文档注入提示。未来可将代理迁移为独立微服务，作为单体拆分的过渡。开源资源如 LangChain Ruby提供现
成工具链，Rails AI Gems加速集成。

8 结论与下一步
AI代理为遗留 Rails现代化提供了低风险切入点，通过实践从MVP迭代，能显著提升系统智能。行动号召：
fork示例仓库，实现首个工具如用户查询，并在生产中测试。欢迎分享你的遗留 Rails + AI案例，推动社区
进步。
资源链接包括 GitHub示例代码仓库（假设 https://github.com/example/rails-ai-agent），OpenAI Tools
文档和 LangChain Ruby指南。

9 附录
完整代码仓库见 GitHub。术语表：AI Agent为自治 LLM系统；ReAct为推理行动循环；Tool Calling为
LLM函数调用。FAQ示例：Rails 4处理通过兼容 Gem和 Ruby 2.5+升级路径。


