
1

ESP32上的蓝牙开发

杨子凡

Dec 28, 2025

ESP32作为一款高度集成的微控制器，在蓝牙开发领域脱颖而出，主要得益于其强大的硬件规格。ESP32搭载
双核 Xtensa LX6处理器，主频可达 240 MHz，同时支持低功耗模式，这使得它特别适合资源受限的嵌入式应
用。此外，ESP32集成了Wi-Fi和 Bluetooth功能，其中 Bluetooth Low Energy（BLE）支持高达 5.0版
本，提供长距离传输和 mesh网络能力。这些优势让 ESP32在智能家居设备如智能灯泡和门锁、穿戴设备如健
身手环、物联网传感器网络以及无线遥控器等领域广泛应用。相比传统蓝牙模块，ESP32无需额外芯片，降低
了成本和功耗，并简化了电路设计。
蓝牙技术主要分为经典蓝牙（BR/EDR）和低功耗蓝牙（BLE）两种。经典蓝牙适用于高带宽场景，如音频传输，
数据速率可达 3 Mbps，但功耗较高。BLE则针对物联网优化，采用低功耗设计，广播间隔可低至几毫秒，适
合电池供电设备。ESP32支持两种协议栈：Bluedroid是 Espressif官方的全功能栈，支持经典蓝牙和 BLE，
API丰富但内存占用较大；NimBLE是轻量级纯 BLE栈，内存需求仅为 Bluedroid的一半，更适合内存紧张的
设备。本文将重点讲解 BLE开发，同时覆盖经典蓝牙基础。
本文针对 Arduino和 ESP-IDF初学者到中级开发者，提供从环境搭建到实战项目的完整指南。读者需具备
基本的 C/C++编程知识，以及 Arduino IDE或 ESP-IDF开发环境的搭建经验。通过阅读，你将掌握 BLE
Peripheral和 Central模式开发、协议栈选择、低功耗优化等多项技能。文章结构从基础知识逐步深入高级主
题，最后以完整项目收尾，帮助你快速上手 ESP32蓝牙开发。

1 开发环境搭建
ESP32蓝牙开发的首要步骤是准备硬件。推荐使用 ESP32-DevKitC或 NodeMCU-32S等开发板，这些板载
CP210x或 CH340 USB转串口芯片，便于调试。必需配件包括数据线和手机或电脑作为 BLE测试设备。如果
使用裸芯片开发，还需外接天线和电源管理模块。
软件环境安装从 Arduino IDE开始，这是初学者友好选择。下载 Arduino IDE 2.x版本后，在文件偏好设置中
添加板卡管理器 URL：https://espressif.github.io/arduino-esp32/。然后在板卡管理器搜索“esp32”并
安装最新包。ESP-IDF适合专业开发，推荐 v5.1或更高版本，使用 VS Code配合官方 ESP-IDF插件，一键安
装工具链，包括编译器和调试器。PlatformIO是另一高效选项，在 VS Code中安装后，它自动管理依赖和库，
支持 Arduino和 ESP-IDF框架切换。无论选择哪种，都需安装 USB驱动：Windows用户下载 CP210x或
CH340驱动，macOS和 Linux通常自动识别，但需检查权限。
验证环境的关键是运行“Hello World”示例。在 Arduino IDE中，选择 ESP32 Dev Module板卡，上传简单
Blink代码后打开串口监视器，波特率设为 115200。若看到日志输出，即环境正常。针对蓝牙模块，上传 BLE
扫描示例，检查日志中是否出现“Bluetooth initialized”信息。常见问题包括板卡未正确选择导致上传失败、
波特率不匹配引起乱码，或 Linux下串口权限不足，可用 sudo命令或添加用户到 dialout组解决。通过这些



2 蓝牙基础知识 2

步骤，确保开发链路顺畅，为后续蓝牙编程奠基。

2 蓝牙基础知识
BLE协议栈架构从物理层向上分层，包括 L2CAP（逻辑链路控制适配协议）提供数据分段，ATT（属性协议）
定义读写操作，GATT（通用属性配置文件）封装服务和特征值，GAP（通用访问配置文件）管理设备发现和连
接。核心角色有 Advertiser（广播设备，不断发送广告包）、Scanner（扫描设备监听广播）、Central（中心
设备主动连接）和 Peripheral（外设设备被动等待）。典型场景中，ESP32作为 Peripheral广播服务，手机作
为 Central扫描并连接。
ESP32提供两种蓝牙协议栈：Bluedroid功能全面，支持经典蓝牙和 BLE，稳定性高但静态 RAM占用约 100
KB，适合复杂项目；NimBLE仅支持 BLE，内存占用仅 20 KB，低功耗优化出色，适用于电池设备。选择取决
于项目需求，轻量项目优先 NimBLE。
GATT是 BLE数据交换核心，使用服务（Service）和特征值（Characteristic）组织数据。服务由 16位或
128位 UUID标识，如标准心率服务 UUID为 0x180D。特征值支持属性如 Read（只读）、Write（只写）、
Notify（通知客户端数据变化）和 Indicate（带确认的通知）。开发者自定义 UUID时，使用 128位格式如
“12345678-1234-5678-1234-56789abcdef0”避免冲突。这些概念是后续开发的基石。

3 BLE 周边设备（Peripheral）开发
创建 BLE Peripheral的基础是广播设备。首先初始化控制器并设置设备名，然后启动广告。ESP-IDF示例代码
如下：

1 esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();

esp_bt_controller_init(&bt_cfg);

3 esp_bt_controller_enable(ESP_BT_MODE_BLE);

esp_bluedroid_init();

5 esp_bluedroid_enable();

esp_ble_gap_set_device_name("ESP32_BLE");

7 esp_ble_adv_data_t adv_data = {

.set_scan_rsp = false,

9 .include_name = true,

.manufacture_len = 0,

11 };

esp_ble_gap_config_adv_data(&adv_data);

13 esp_ble_gap_start_advertising(&adv_params);

这段代码逐行解析：esp_bt_controller_init使用默认配置初始化硬件控制器，支持 BLE模式；
esp_bt_controller_enable启用 BLE并分配内存；esp_bluedroid_init和 esp_bluedroid_enable

初始化 Bluedroid栈，提供 GAP和 GATT API；esp_ble_gap_set_device_name设置可见设备名为
“ESP32_BLE”，手机扫描时显示；esp_ble_adv_data_t结构体配置广告数据，include_name确保
名称包含在内；esp_ble_gap_config_adv_data应用配置；esp_ble_gap_start_advertising以默认



3 BLE周边设备（Peripheral）开发 3

参数（间隔 100ms-1000ms）开始广播。此过程约需 100ms，日志显示“GAP_EVT_ADV_START”
确认成功。Arduino版本用 BLEDevice::init(ESP32_BLE); BLEAdvertising *pAdvertising =

BLEDevice::getAdvertising(); pAdvertising→start();，更简洁封装。
实现 GATT服务器需定义服务和特征值。以温度传感器为例，创建标准环境感知服务（UUID 0x181A），添加温
度特征值（UUID 0x2A6E，支持 Notify）：

1 #include <BLEDevice.h>

#include <BLEServer.h>

3 #include <BLEUtils.h>

#include <BLE2902.h>

5

BLEServer *pServer = NULL;

7 BLECharacteristic *pTemperatureCharacteristic = NULL;

bool deviceConnected = false;

9

class MyServerCallbacks: public BLEServerCallbacks {

11 void onConnect(BLEServer* pServer) { deviceConnected = true; };

void onDisconnect(BLEServer* pServer) { deviceConnected = false; };

13 };

15 void setup() {

BLEDevice::init("ESP32_TempSensor");

17 pServer = BLEDevice::createServer();

pServer->setCallbacks(new MyServerCallbacks());

19 BLEService *pService = pServer->createService("181A");

pTemperatureCharacteristic = pService->createCharacteristic(

21 "2A6E", BLECharacteristic::PROPERTY_READ | BLECharacteristic::PROPERTY_NOTIFY);

pTemperatureCharacteristic->addDescriptor(new BLE2902());

23 pService->start();

BLEAdvertising *pAdvertising = pServer->getAdvertising();

25 pAdvertising->start();

}

27

void loop() {

29 if (deviceConnected) {

float temp = 25.5; // 模拟温度
31 uint8_t data[4];

memcpy(data, &temp, 4);

33 pTemperatureCharacteristic->setValue(data, 4);

pTemperatureCharacteristic->notify();



4 BLE中心设备（Central）开发 4

35 delay(1000);

}

37 }

解读：BLEServerCallbacks类重载 onConnect和 onDisconnect，跟踪连接状态，避免无效通知。setup

中 createService(181A)创建服务，createCharacteristic定义特征值，属性组合支持读和 Notify；
BLE2902是标准描述符，启用客户端配置。loop模拟温度数据，用 memcpy打包为 4字节浮点，转发 Notify。
手机用 nRF Connect App连接后订阅特征值，即实时接收温度更新。
安全配对使用 Just Works模式（无输入设备自动配对）或 Passkey（6位数字验证）。流程：Central发送配
对请求，Peripheral响应加密密钥交换，确保数据机密。ESP-IDF中 esp_ble_gap_set_security_param

配置模式。
调试技巧包括启用日志 esp_log_level_set(*, ESP_LOG_VERBOSE)查看详细事件，手机 App如 nRF
Connect显示 RSSI和包内容，或用Wireshark抓包分析MTU和 PDU。

4 BLE 中心设备（Central）开发
BLE Central开发从扫描开始。调用 esp_ble_gap_start_scanning(5)扫描 5秒，回调中解析广告数据：

1 static void gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *

↪→ param) {

if (event == ESP_GAP_BLE_SCAN_RESULT_EVT) {

3 esp_ble_gap_cb_param_t *scan_result = (esp_ble_gap_cb_param_t *)param;

if (scan_result->scan_rst.search_evt == ESP_GAP_SEARCH_INQ_RES_EVT) {

5 // 过滤服务 UUID

if (esp_ble_is_service_uuid_match(scan_result->scan_rst.ble_adv,

7 0x181A, NULL)) {

esp_ble_gap_stop_scanning();

9 esp_ble_gattc_open(gattc_if, &scan_result->scan_rst.bda,

↪→ BLE_ADDR_TYPE_PUBLIC, true);

}

11 }

}

13 }

此回调处理扫描结果事件，esp_ble_is_service_uuid_match检查环境感知服务 UUID，若匹配则停止扫描
并连接。解析广告包的 ble_adv字段提取设备地址（BDA）和类型。
连接后进行 GATT客户端操作。服务发现用 esp_ble_gattc_search_service(gattc_if, conn_id,

&filter)，filter指定 UUID。发现服务后，获取特征值句柄并读写：

1 esp_ble_gattc_read_char(gattc_if, conn_id, char_handle, ESP_GATT_AUTH_REQ_NONE);

读操作异步返回数据回调。订阅 Notify用 esp_ble_gattc_register_for_notifications，客户端收到
Peripheral Notify时触发事件。



5 经典蓝牙（SPP）开发 5

多设备管理通过连接池实现，每个连接有唯一 conn_id，维护数组跟踪状态。自动重连监听
ESP_GAP_BLE_DISCONNECT_EVT，重启扫描和连接逻辑。

5 经典蓝牙（SPP）开发
经典蓝牙传输速度高达 3 Mbps，功耗约 BLE的 4倍，适用于串口替代。SPP（串口协议）模拟 RS232，实现
透明传输。ESP-IDF初始化：

1 esp_bt_controller_enable(ESP_BT_MODE_CLASSIC_BT);

esp_bluedroid_enable();

3 esp_bt_gap_register_callback(gap_cb);

esp_spp_register_callback(spp_cb);

5 esp_spp_init(ESP_SPP_MODE_CB);

esp_spp_start_srv(ESP_SPP_SEC_NONE, ESP_SPP_ROLE_SLAVE, 10, "SPP_Server");

esp_spp_init以回调模式初始化，esp_spp_start_srv启动服务器，角色为从机，安全无加密，服务名为
“SPP_Server”。回调 spp_cb处理打开、关闭和数据事件：

void spp_cb(esp_spp_cb_event_t event, esp_spp_cb_param_t *param) {

2 if (event == ESP_SPP_SRV_OPEN_EVT) {

// 客户端连接
4 } else if (event == ESP_SPP_DATA_IND_EVT) {

uart_write_bytes(UART_NUM_0, param->data_ind.data, param->data_ind.len);

6 }

}

数据到达时转发到 UART，实现蓝牙到串口桥接。PC用串口助手连接“SPP_Server”，发送数据即在 ESP32
串口输出，反之亦然。

6 高级主题与优化
低功耗优化调整广播间隔至 1s，连接参数协商MTU至 247字节，进入 Light Sleep模式降低至微安级。测试
用 ESP Power Monitor测量电流曲线。
Wi-Fi和 BLE共存需通道避让，BLE默认通道 37-39，Wi-Fi动态切换。API esp_bluedroid_ble_coex_enable()
启用共存。
BLE OTA升级分控制服务和数据服务，客户端分包下载到 OTA分区，验证 CRC后重启。自定义协议用 CRC16
校验命令帧：头（1字节命令）+数据 + CRC（2字节）。
性能基准显示 BLE Notify吞吐 10 KB/s，延迟 20 ms，功耗 5 mA；经典 SPP为 100 KB/s、50 ms、20
mA。



7 完整项目实战 6

7 完整项目实战
BLE智能灯控项目使用 ESP32连接 LED和电位器，实现 App控制亮度和颜色同步。服务 UUID自定义为
“12345678-1234-5678-1234-56789abcdef0”，特征值控制 PWM占空比和 RGB值。完整代码包括连接
回调、Notify状态上报和 PWM输出。模拟心率监测器用标准 HR服务（0x180D），定时生成 60-100 bpm
数据，通过 Notify发送，模拟MAX30102传感器。
部署时，用 Flutter开发跨平台 App，集成 flutter_blue_plus库扫描和读写。批量测试脚本循环连接多设备，
记录丢包率。

8 常见问题与故障排除
无法扫描设备通常因广播未启动，检查 esp_ble_gap_config_adv_data是否调用且广告数据包含服务
UUID。连接断开多为 RSSI低于 -80 dBm，调整 esp_ble_tx_power_set(ESP_BLE_PWR_TYPE_DEFAULT,

ESP_PWR_LVL_P9)提升功率。内存溢出切换 NimBLE，减少 MTU大小。工具如 BLE Scanner App显示实时
RSSI，ESP-IDF Monitor捕获日志。
本文从环境搭建到实战，覆盖 ESP32蓝牙全链路，掌握后你能开发生产级应用。进阶阅读 ESP-IDF文档和
Bluetooth SIG规范。资源包括 Espressif BLE GitHub示例、Arduino BLE库和 ESP32中文社区。欢迎分
享你的项目，关注后续Wi-Fi系列。


