HArwHRIRIT
BV
Dec 30,2025

ERARERGS, BHEREA—TSHROLRESND, TAFRE. B ZNABTEERSN Redis. HIEEZRS]
40 RocksDB, L& Web fRSHPHRIFEE, RARMARTMELRIALE, EBESZLEERATR,
BARBRITNBREEROE. E8HATRT, FRRFEREEARDIMASZER, FH CPUMARMETHM
MEREMRET. HAMBRIIEME, EEASLRENETRESELE. MERRERMHE, FRIELEREM
HE—EU,

RiItAAMAERERES R, 8%, REHRIFIREIELT2EE, NHERFMAILEHER, 2R, %685
EHERNNEEXER. BREAMA—BMEEHRMELE, MBI —BIENFTEESINESR bug. b5, TE
HRBLARTF. EHEFIRR, rehash RFFEERREMBEFRBELRE, TNWRFH lstop-the-world) %
W, MmERMENRG.
AXHEFRERRARITIMMHLREEFE. RITSMERBIENT, BSRZRTH, RNRNEED
Rigit, HESMENAMNTIERE, RESENRKRBR. XEEWEN: SEIEM, AEDAHkE, S
SHEBR, FESRKLT, KREWEAE. MAMRESR.

1 EAhEE =R

FRARAFRNREETIRARIGRRF FIEARS|. MEMFH R MurmurHashd 839573 #, RS
Ro MRRFEAEMILE, BIS MBI — IR, HEARIUDE, BILERNIREI=E, BNRFHTE
MEARE, EAM, HPRMEMEFERE. EHEM, AEMURBERERTEE. BERNFOERERIEH
LOBRAEFRR. AHEFERIRN 0.75, YuRBBIEENR rehash, BRHAT B AMEHEHNHT!
FrBTH.
HARZNEMETIEERE —BHRE, x86 RMRMHERINAER, M ARM NERER, FEEARFE. |
F121F40 CAS (Compare-And-Swap) BEHiHFEERA, ERFMLLRRNFEHXNE AFREHRIZ
R, 5190 release RERIEGRIEMNESRAN, HXRESF. ERUEGEEEDR, BEEUMKIRS
5, REYAWHRIRERSES, BRSNEREFANSH, BRRESTR

2 FHAWAHRIE B

BRERRPERHRGAROZUER. BRZELOHRT, BUERSHESEURLERETSERF. Al,
FIRAANES, (NBIEZTIME, BEERIEM rehash 2FEERANE, FRIZITHLFEEMRBIRE,
ERERER, MAZEETREMEE, FARASIEIESIENIL,

SMA—HMERE—BERE, EXSMEMFOBSRTHT, AARFENIRFE. BMEFEEEERM, i



3 ZEMHREHERILAI 2

BEAENMR—HMNFAE, FRIZENTTREEEY happens-before XRRIE, 30 volatile 5&1TFia4:
B, BREMWATESHEREMAATIR,

P ARERAEHRIFBELNES. 14 rehash XA lstop-the-world) %k, 2EEERS. BERSSEN
A, XFaEZ, B8 rehash RAFLEENMETHEME, BRBATIHPIRE AR RIRETEHEIAR, 5
BIERMENRLEE,

ABA nBR BB AL HEH, i, CASIRERNEM AT RN BEE A, &AL T K. RIANHER
MR T REER, SREHEIR. BRARCESIAITHIRENKERER. BEREMCERRT R, X
Epoch-based R#EEIUL, ZEKLISZLEWEO,

3 ZEALAWRBEREIMDMN

Java B ConcurrentHashMap @ H &M & KRR EM, JDK1.7 RASEBIKIT, RO R 16 D
Segment, 81 Segment JRICMPI, THF 16 BHAE, EHE JDK 1.8, &F Segment 24 Node ##K
+ synchronized @i, H5INIERAAKEE. T ANGREY: HBAHBEHE, ELENERR, HUERED
BiE#4E, #/ ForwardingNode 1RI2ZEE#&. SizeCtl RFLERIERE, MHERTY BH, EEEHR
B, MEEL, EEMHEEERHR, S XEETR,

EENEIRIHES RCU (Read-Copy-Update) B8, EEFT2LH, HIZEH HaThRABIESN; 5i§
REHNZEMT R, MRASERFEIRKIEH. BEBIFTMOEREA—BMYE, EF—BUER, XMHIZIHE
BiikE, BEHFHEA, REREIEES.

Lo FERBRREMEEE, BT CAS EMAKI U, Hopscotch Hashing i@id MBkEL) #RiZ4RiLFEL, S2I
BEBEHHRM. Level Hashing 34k7ZME: LO AEXHIREK, L1 ABEHIER, EEE LO KME L1, THiILITHE
R, B3t ABA 8%, T Hazard Pointer BhiF,

4 BRIRITEE. PRARRER

DRARGHERNZODEZERTHESRRABNED, HNLRRBE. ABUREWRITREE, B8RTER
RNTEER. ¥ BEE. RBARHMNSEERA), EBFBHE(. 51 Bucket BERFB. H#XRXMBEPIT
W, SRAF RIS,
ZRIZODHIREIEN

struct alignas(64) ConcurrentHashTable {
std::atomic<size_t> size; // £FK/N (TBiitEK, FH fetch_add)
std::atomic<size_t> threshold; // ¥ BREIE
Bucket* buckets; // W¥ABREH, RFEHM
std::atomic<size_t> log2_table_size; // MK/, hash UEBHE: (hash >> shift) &
— mask

struct alignas(64) Bucket {
std: :mutex lock; // WMEKEFPI, cache-line XFTFERMAEE
Node* head; // ¥k, X¥F volatile EMIL



"

5 ¥ BNEIEE 3

size_t local_size; // BERITEL, SEIIIBIEHR
s

XEMAA, alignas(64) R cache-line 335, LS EBIHRIMHZEESHEFTEN.

size {F M fetch_add SEM L BIITER, BREABIFE . log2_table_size LILENL: WERSI A
(uint32_t(key_hash) >> shift) & (table_size - 1), HH shift = 32 - log2_table_sizes
Bucket B lock IRIFEREE, EAI LB RIER,

GET #RERBEELH: TEWAHE TR, BHERLER, HOEXT KA. BR4IH, Fid. PUT &£X
B ERESERE, SXLNMMES, A CAS E#fkigst, MY fetch_add £/3 size # local_size, DEL
M, THIFRIC Tombstone TR, EEYIENER. SIZE @3 XK ZH local_size fhit, B RLBHH,

5 I BHEIERE

FEMEARTFoSHBET, MEE 0.75 AR ANBEENE, MREFELNASRER, KKREYLR size 8

threshold BY/E5,

HERSY ARIBUT: TXIEFETFIRE size NAERBY RS (M0 -1 * NCPU RTEREH) . SNEE

claim —EI@SERE, £ CAS Rt EgHE., LRIEFH, SR(EEB® ForwardingNode MBI R ITEAL
B, TIBREF swap buckets ig§t, HEE size

T Hs8Ed ForwardingNode fi#iR: XE—MIHT R, &A% E MOVED MRS H. GiRIE&EZNHE
T ZiF. SizeCtl H—FiHi3: SUEERBRS, RAEFELEH

6 MERELILIRTIS

ZEMURUERXE. FIERESEMIN Bucket 33 cache-line X35, EMBUERALIEE, T REHERYE,
MEREEEER. NUMA A9 BB RS B AT aiE, Bl aibn.

WBFERBEEFEBREE L. MurmurHash3 121 64 394991, xxHash REEHR. K EHH=A SipHash
Fh HashDoS,

BAMSIN MCS 8i: SNEEFAMT SHABEE, BB % XM IVM REsi, £RWBRISETEA,
EHRRERB, PiEAFIAE Escape Analysis, &XRAKIENIERB,

7 BENRS %D

MiARFA YCSB ERBZEINEIRS i d, MBEENHEENE—IRE, HENEER, AARREFLIX 25M
QPS, 5 6.8M QPS, PO9IER 1.2 u's, RNEMES, 181K std::unordered_map (B&iE1.2ME) M
ConcurrentHashMap (18M %), AI&ITHEZIZT BMHEE M,

TRBEDMER, 764 RELMT BE 90% MK, AMIRBET, RET BEWHNE, BH# rehash 1=Hlig
E7E 130%.



N

20

24

26

8 PRI ZZRf 4

8 SKFRIiZZ{

FiES=IM A, Folly B AtomicHashArray 2 Facebook £ H AR, ZIFRFEHRTLTHIE. Abseil
SwissTable ¥ Google & 14£AE Swiss ##FM, SIMD IEEK. LevelDB MHAMERIMNFA L,

FHELZWRPT . BRRE 956%. ¥ BMEMT 1/, BiRFER <6%, RERHIIHT SRS
EBEZHD A

9 BRESKREAM

HalH RE—HMEHERIERAN, FALE WAL BEERK. 26X —BNFE Paxos/Raft,
AR E4E eBPF MEAZIEH. GPU RIITEHITHT, UAEFL2MAEN XMSS,
RitZORNZED BHMKR. H#EA UMD ET S, LT IIERF:

#include <atomic=>
#include <mutex>

#include <cstdint>

struct Node {

uintB4_t hash;

std::string key, value;

Node* next;

uint32_t version; // RWIRIEIE

Node(uintB4_t h, std::string k, std::string v)

: hash(h), key(std::move(k)), value(std::move(v)), next(nullptr), version(0) {}

b

struct Bucket {
std: :mutex lock;
std: :atomic<Node*> head{nullptr};
std::atomic<size_t> local_size{0};

bs

class ConcurrentHashTable {
static constexpr float LOAD_FACTOR = 0.75f;
std::atomic<size_t> size_{0};
std::atomic<size_t> log2_size_{4}; // #]48 16 &

std::unique_ptr<Bucket[]> buckets_;

size_t table_size() const { return 1UL << log2_size_.load(); }
size_t threshold() const { return size_t(table_size() * LOAD_FACTOR):; }



28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

9 RRMSKRESR

public:

ConcurrentHashTable() : buckets_(std::make_unique<Bucket[]>(16)) {}

bool get(const std::string& key, std::string& value) {
uintB4_t hash = murmur_hash(key.data(), key.size());
size_t idx = (hash >> (64 - log2_size_.load())) & (table_size() - 1);
Bucket& b = buckets_[idx];
uint32_t ver = b.head.load()->version; // FWMiEhkZ
Node* cur = b.head.load(std::memory_order_acquire);
while (cur) {
if (cur->hash == hash && cur->key == key) {
if (cur->version == ver) { // WIEEXHEEX
value = cur->value;
return true;
}
break; // WRATRLE, =i
}
cur = cur-=next;

}

return false;

bool put(std::string key, std::string value) {
uintB4_t hash = murmur_hash(key.data(), key.size());
size_t idx = (hash >> (64 - log2_size_.load())) & (table_size() - 1);
Bucket& b = buckets_[idx];
{
std::lock_guard<std: :mutex> g(b.lock);
Node* cur = b.head.load();
while (cur) {
if (cur->hash == hash && cur->key == key) {
cur->value = std::move(value);
cur->version++; // hRZAEIZERNIRE
return true;
}
cur = cur->next;
}
/] T RkE

Node* new_node = new Node(hash, std::move(key), std::move(value));



68

70

72

74

76

78

80

9 RRMSKRESR 6

new_node->next = b.head.load();
b.head.store(new_node, std::memorg_order_reledse);
b.local_size.fetch_add(1);

}

size_.fetch_add(1);

if (size_.load() > threshold()) resize();

return false;

private:

void resize() { /* ¥ BRIEEE, SHERIXMENSF] */ }

uintB4_t murmur_hash(const char* data, size_t len) { /#* MurmurHash3 SE¥] %/ return
— 0; }

bs

XEABETEARFZL, GET BEBIRWIERN, RAIIEMAELEE K. PUT INEBHMIEPR, KIEREHRS.
resize I FMBIMET B. ERIiMERATH2BHBNRNEERR,

FIERFHFCIEPEE (C++ Concurrency in Action) e {The Art of Multiprocessor Program-
mingo



