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struct alignas(64) ConcurrentHashTable {
std::atomic<size_t> size; // £FK/N (TBiitEK, FH fetch_add)
std::atomic<size_t> threshold; // ¥ BREIE
Bucket* buckets; // W¥ABREH, RFEHM
std::atomic<size_t> log2_table_size; // MK/, hash UEBHE: (hash >> shift) &
— mask

struct alignas(64) Bucket {
std: :mutex lock; // WMEKEFPI, cache-line XFTFERMAEE
Node* head; // ¥k, X¥F volatile EMIL



"

5 ¥ BNEIEE 3

size_t local_size; // BERITEL, SEIIIBIEHR
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#include <atomic=>
#include <mutex>

#include <cstdint>

struct Node {

uintB4_t hash;

std::string key, value;

Node* next;

uint32_t version; // RWIRIEIE

Node(uintB4_t h, std::string k, std::string v)

: hash(h), key(std::move(k)), value(std::move(v)), next(nullptr), version(0) {}

b

struct Bucket {
std: :mutex lock;
std: :atomic<Node*> head{nullptr};
std::atomic<size_t> local_size{0};

bs

class ConcurrentHashTable {
static constexpr float LOAD_FACTOR = 0.75f;
std::atomic<size_t> size_{0};
std::atomic<size_t> log2_size_{4}; // #]48 16 &

std::unique_ptr<Bucket[]> buckets_;

size_t table_size() const { return 1UL << log2_size_.load(); }
size_t threshold() const { return size_t(table_size() * LOAD_FACTOR):; }
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public:

ConcurrentHashTable() : buckets_(std::make_unique<Bucket[]>(16)) {}

bool get(const std::string& key, std::string& value) {
uintB4_t hash = murmur_hash(key.data(), key.size());
size_t idx = (hash >> (64 - log2_size_.load())) & (table_size() - 1);
Bucket& b = buckets_[idx];
uint32_t ver = b.head.load()->version; // FWMiEhkZ
Node* cur = b.head.load(std::memory_order_acquire);
while (cur) {
if (cur->hash == hash && cur->key == key) {
if (cur->version == ver) { // WIEEXHEEX
value = cur->value;
return true;
}
break; // WRATRLE, =i
}
cur = cur-=next;

}

return false;

bool put(std::string key, std::string value) {
uintB4_t hash = murmur_hash(key.data(), key.size());
size_t idx = (hash >> (64 - log2_size_.load())) & (table_size() - 1);
Bucket& b = buckets_[idx];
{
std::lock_guard<std: :mutex> g(b.lock);
Node* cur = b.head.load();
while (cur) {
if (cur->hash == hash && cur->key == key) {
cur->value = std::move(value);
cur->version++; // hRZAEIZERNIRE
return true;
}
cur = cur->next;
}
/] T RkE

Node* new_node = new Node(hash, std::move(key), std::move(value));
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new_node->next = b.head.load();
b.head.store(new_node, std::memorg_order_reledse);
b.local_size.fetch_add(1);

}

size_.fetch_add(1);

if (size_.load() > threshold()) resize();

return false;

private:

void resize() { /* ¥ BRIEEE, SHERIXMENSF] */ }

uintB4_t murmur_hash(const char* data, size_t len) { /#* MurmurHash3 SE¥] %/ return
— 0; }

bs

XEABETEARFZL, GET BEBIRWIERN, RAIIEMAELEE K. PUT INEBHMIEPR, KIEREHRS.
resize I FMBIMET B. ERIiMERATH2BHBNRNEERR,

FIERFHFCIEPEE (C++ Concurrency in Action) e {The Art of Multiprocessor Program-
mingo



