
1

神经网络基础：从零到英雄

黄梓淳

Jan 04, 2026

想象一下，2016年 3月 15日，AlphaGo以 4:1的比分击败了世界围棋冠军李世乭，那一刻，人工智能从科幻
走入现实。或者想想你手机上的面部解锁功能，它能瞬间识别你的脸庞，这些奇迹都源于神经网络。这篇文章将
带你从零基础起步，逐步掌握神经网络的核心原理与实践技巧，最终让你从门外汉变成入门英雄。无论你是大学
生、转行者还是自学者，我们无需高等数学背景，只需 Python基础、线性代数和概率的入门知识。如果你需
要复习，可以参考 Khan Academy的在线课程。文章将从生物灵感出发，逐步深入数学基础、实践构建、优化
技巧，直至实际应用和英雄级扩展，每一步都配以代码示例和思考引导。

1 什么是神经网络？（生物灵感与基本概念）
神经网络的起源可以追溯到生物学。大脑中的神经元通过树突接收信号，经细胞体处理后，从轴突传递给下一个
神经元，突触则调控信号强度。人工神经元模仿这一机制：它接收多个输入信号，每个输入乘以一个权重（代表
连接强度），再加上偏置项，然后通过激活函数产生输出。权重和偏置是网络「学习」的关键参数，通过训练不
断调整。
与传统机器学习相比，神经网络更强大。线性回归或 Logistic回归擅长处理线性关系，但面对复杂非线性数据
如图像或语音时，它们会失效，因为无法自动提取深层特征。神经网络通过多层堆叠，自动学习层次化表示：浅
层捕捉边缘，深层识别物体。这就是它处理猫狗分类或语音转文字的秘密。
核心组件可以用单层感知机来理解，它是一个人工神经元：输入向量 x通过权重 w加权求和，加上偏置 b，得
到 z，然后激活函数 f(z)输出结果。多层感知机（MLP）扩展为输入层、多个隐藏层和输出层。输入层接收原
始数据，隐藏层逐层变换特征，输出层给出预测。例如，在分类任务中，输出层可能使用 Softmax将分数转为
概率分布。
为什么神经网络能「学习」？因为它通过数据调整权重，模拟大脑的突触可塑性。思考一下：如果权重固定，网
络只是固定函数；通过训练，它能适应任意复杂模式。

2 数学基础（从零构建理解）
前向传播是神经网络计算预测的过程。以一个简单网络为例，假设输入 x是一个向量，权重 w是矩阵，第一层
计算 z[1] = w[1] · x + b[1]，然后应用激活函数如 Sigmoid： σ(z) = 1

1+e−z，得到 a[1] = σ(z[1])。下一层类
似： z[2] = w[2] · a[1] + b[2]，输出层或许用 Softmax。对于 ReLU激活， f(z) = max(0, z)，它简单高效，
避免梯度消失。手算示例：输入 x=[1,2]，w1=[[0.5,0.3],[0.4,0.6]]，b1=[0.1,0.2]，则 z1=[0.51+0.32+0.1,
0.41+0.62+0.2]=[1.2,1.8]，ReLU后 a1=[1.2,1.8]。
损失函数衡量预测与真实的差距。对于分类，交叉熵损失优异： L = −

∑
y log(ŷ)，其中 y是真实标签，

2 数学基础（从零构建理解） 2

\hat{y}是预测概率。它惩罚置信错误的预测。对于回归，均方误差MSE： L = 1
n

∑
(y − ŷ)2，简单直观。

反向传播是训练核心，利用链式法则从输出层反向计算梯度。例如，损失对最后一层权重的梯度为 ∂L
∂w[L] =

∂L
∂a[L] · ∂a

[L]

∂z[L] · ∂z
[L]

∂w[L]，逐层向前传播误差。梯度下降更新参数：w ← w− η ∂L
∂w，η是学习率。SGD用单个样本计

算梯度，Adam结合动量和自适应学习率更稳定。但深层网络易遇梯度消失（Sigmoid梯度趋零）或爆炸（梯
度过大），ReLU和规范化可缓解。
下面是用 NumPy从零实现一个简单神经元的代码示例。这个函数模拟单层感知机的前向传播和反向传播。

1 import numpy as np

3 def sigmoid(z):

return 1 / (1 + np.exp(-np.clip(z, -250, 250))) # 防止溢出
5

def sigmoid_derivative(a):

7 return a * (1 - a)

9 class SimpleNeuron:

def __init__(self, input_size):

11 self.W = np.random.randn(input_size, 1) * 0.01 # 小随机初始化
self.b = np.zeros((1, 1))

13

def forward(self, X):

15 self.z = np.dot(X, self.W) + self.b # z = Wx + b

self.a = sigmoid(self.z) # 激活
17 return self.a

19 def backward(self, X, y, output, learning_rate=0.01):

m = X.shape[0]

21 dz = output - y # 输出误差
dW = np.dot(X.T, dz) / m # 权重梯度

23 db = np.sum(dz, axis=0, keepdims=True) / m # 偏置梯度
self.W -= learning_rate * dW # 更新

25 self.b -= learning_rate * db

return dW, db

27

示例使用
29 X = np.array([[1, 2], [3, 4]]) # 两个样本，每个 2 维

y = np.array([[1], [0]]) # 标签
31 neuron = SimpleNeuron(2)

output = neuron.forward(X)

33 print("预测 :", output)

3 构建第一个神经网络（实践入门） 3

dW, db = neuron.backward(X, y, output)

35 print("权重梯度 :", dW)

这段代码首先定义 Sigmoid激活及其导数，导数用于反向传播： σ′(z) = σ(z)(1− σ(z))。SimpleNeuron类
初始化小随机权重避免对称性问题。前向传播计算线性组合 z，再激活为 a。反向传播计算 dz = a - y（二分类
MSE近似），然后 dW = X^T * dz / m（平均梯度），db类似。更新用梯度下降。这个示例展示了完整训练一
步：输入 X（2样本 2特征）、标签 y、前向得 output、反向更新参数。运行后，你会看到预测从随机值调整，
梯度反映误差方向。通过多次迭代，网络逼近正确分类。

3 构建第一个神经网络（实践入门）
实践从环境搭建开始。安装 NumPy用于计算，Matplotlib绘图，PyTorch简化张量操作（pip install torch
torchvision）。我们用MNIST手写数字数据集入门，它包含 6万训练图像，每张 28x28灰度像素。
数据预处理至关重要：归一化像素到 [0,1]（除以 255），展平为 784维向量，标签转为 One-Hot编码（如 3
转为 [0,0,0,1,0,...]）。模型用全连接层：输入 784→隐藏层 30→输出 10（Softmax分类）。
训练循环包括前向传播计算预测，交叉熵损失，反向传播更新权重。PyTorch用 autograd自动求导，
DataLoader批量加载数据。
下面是完整MNIST分类器的 PyTorch代码。这个脚本加载数据、定义模型、训练并评估。

1 import torch

import torch.nn as nn

3 import torch.optim as optim

from torchvision import datasets, transforms

5 from torch.utils.data import DataLoader

import matplotlib.pyplot as plt

7

数据加载与预处理
9 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize

↪→ ((0.1307,), (0.3081,))])

train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform

↪→)

11 test_dataset = datasets.MNIST('data', train=False, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

13 test_loader = DataLoader(test_dataset, batch_size=1000, shuffle=False)

15 # 模型定义
class Net(nn.Module):

17 def __init__(self):

super(Net, self).__init__()

19 self.fc1 = nn.Linear(28*28, 30) # 输入 784 → 30

self.fc2 = nn.Linear(30, 10) # 30 → 10 输出

3 构建第一个神经网络（实践入门） 4

21

def forward(self, x):

23 x = x.view(-1, 28*28) # 展平
x = torch.relu(self.fc1(x)) # ReLU 激活

25 x = torch.softmax(self.fc2(x), dim=1) # Softmax 概率
return x

27

model = Net()

29 criterion = nn.CrossEntropyLoss() # 交叉熵，自动处理 One-Hot

optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam 优化器
31

训练循环
33 epochs = 5

for epoch in range(epochs):

35 model.train()

for batch_idx, (data, target) in enumerate(train_loader):

37 optimizer.zero_grad() # 清零梯度
output = model(data) # 前向

39 loss = criterion(output, target) # 损失
loss.backward() # 反向

41 optimizer.step() # 更新
print(f'Epoch {epoch+1}, Loss: {loss.item():.4f}')

43

评估
45 model.eval()

correct = 0

47 with torch.no_grad():

for data, target in test_loader:

49 output = model(data)

pred = output.argmax(dim=1)

51 correct += pred.eq(target).sum().item()

accuracy = 100. * correct / len(test_loader.dataset)

53 print(f'准确率 : {accuracy:.2f}%')

代码解读从数据开始：transforms归一化MNIST均值 0.1307、方差 0.3081，提高收敛。DataLoader批
量 64样本 shuffle随机化。Net模型继承 nn.Module，forward展平输入、ReLU隐藏层、Softmax输出
（dim=1沿类别维度）。CrossEntropyLoss内部结合 LogSoftmax和 NLLLoss，target是整数标签无需
One-Hot。Adam初始化模型所有参数（self.fc1.weight等）。训练中 zero_grad清前次梯度，forward
得 output，loss计算（实际 −

∑
y log ŷ），backward计算全链梯度，step更新。5个 epoch后评估：

no_grad禁用梯度，argmax选最大概率类，eq比较正确数。典型准确率达 95%以上。这个代码可在 Colab

4 进阶技巧与优化（从入门到熟练） 5

免费运行，完整仓库见 GitHub: https://github.com/example/nn-from-zero。
评估用准确率：正确预测比例。学习曲线 plot loss随 epoch下降，确认收敛。

4 进阶技巧与优化（从入门到熟练）
优化网络架构是提升性能关键。Dropout随机丢弃神经元（率 0.2-0.5），防止过拟合，如 nn.Dropout(0.2)。
L2正则化加权重衰减：损失 += λ ||w||^2，PyTorch中 optimizer用 weight_decay=1e-4。批量归一化标
准化每层输入： BN(x) = x−µ√

σ2+ε
γ + β，加速训练，nn.BatchNorm1d(30)插入层间。

超参数调优如学习率（1e-3起步）、Batch Size（32-256）、Epochs（10-100）。Grid Search枚举组合，
但 Ray Tune更高效。
常见问题中，过拟合表现为训练准确高测试低，用验证集早停：若 val loss 5 epoch不降则停止。欠拟合则增
层/数据增强（如随机旋转MNIST图像）。
扩展到 CIFAR-10彩色图像（10类，32x32 RGB），需展平 3072维或引入 CNN，但先用 MLP测试优化技巧。

5 卷积神经网络（CNN）与序列模型简介（英雄级扩展）
CNN专为图像设计。卷积层用滤波器扫描局部区域：输出 oi,j =

∑∑
k · inputi+m,j+n，捕捉边缘/纹理。池

化如MaxPool下采样，减少参数。LeNet-5首用 CNN识MNIST。PyTorch示例简化为 Conv2d(1,6,5)→
ReLU→MaxPool2d→ FC。
序列模型如 RNN处理文本：隐藏状态 ht = tanh(whht−1 + wxxt)，但长序列梯度消失。LSTM加门控：遗忘
门 ft = σ(wf [ht−1, xt])，选择性记忆。
Transformer革命性引入注意力： Attention(Q,K, V) = softmax(QKT

√
dk

)V，并行计算，自注意力捕捉全局
依赖，奠基 BERT/GPT。

6 实际应用与部署
神经网络驱动真实场景：计算机视觉用人脸识别（CNN+ArcFace损失），NLP做情感分析（LSTM+注意力），
推荐系统用MLP预测点击率（Wide&Deep模型）。
部署用 ONNX导出跨框架模型，TensorFlow Lite跑移动端，Flask建Web API：from flask import Flask;
app.route(’/predict’, methods=[’POST’])加载model.predict(json数据)。
资源推荐：Goodfellow《深度学习》书籍，Andrew Ng Coursera课程，PyTorch文档。

7 结论
我们从生物神经元起步，穿越前向反向数学、MNIST实践、优化技巧，到 CNN Transformer英雄境界。现在，
你已掌握神经网络精髓。下一步，参加 Kaggle竞赛如 Titanic生存预测，或建个人项目如自定义图像分类器。
坚持实践，每个人都能成为 AI英雄！常见问题：无需 PhD，实践胜理论。

8 附录 6

8 附录
数学速查：前向 zl = wlal−1+ bl，反向 ∂L

∂wl = δl(al−1)T。代码汇总：Jupyter Notebook https://colab.re-
search.google.com/example。进一步阅读：LeNet论文、ResNet Skip Connection，用 Colab免费实
验。词汇：Epoch一轮全数据遍历，激活函数引入非线性。

