HEMBEM: NEFRE

BIEE
Jan 04,2026

BR—T, 2016 £ 3 A 15 B, AlphaGo Ll 41 Btk D EM T HREHEESFME, B—zl, ATEEMRIL
ENIE, SHEBBRFN LOVEERRRBTIEE, THEBREIRFIRAIRHE, XL TERTHENSE, XEXER
HIMMEEEY, B ZEHEMENIZORESLEKIT, RLILRMIINXERNIRE, TRRRRF
. BITELRBEE, RINETFSFHFEE R, RF Python &bl LMABMBIRAINIIFIR, WRIRFE
EE>), AILEZE Khan Academy FITELIRIZ. XERMEYMRBHE, FLZRNKFEM, SSHME, ik
®15, BEERMGNANRBRYT R, 8—IHEURBDTREMNEES|F.

1 HFARHENE? (EYRBESESTZ

HEMBHEIR LUEMEIEN T, AMPRESLTEIMNEREWRES, SARGLER, MNBREBLT—
M2, RMNPEESEE. ATHEZTRAEX—IE:. SRS MINES, 8MRARM—ME (KX
EEERE), BNLRED, ARBIHERH LR, NEMREENSE F3) HXESHL, BLIIEF
A,

S5E%NBFIMEL, WEMEERA, ZM4EYVIH Logistic EBRKAIBLEMXR, BENEFRIFEIELIRE
MEGIIEST, EMNaRN, BATEEHRIARIL. #ENSEIZREE, BaFIBRUERT: X
Biteinsg, REIRME. XM D RTESHXFHIME,

BB LA RRRAKER, ER—IATHET. BARE x BINE w KM, MERE b, 7
3z, AEWEREL f(2) BHER. ZEZBHNN (MLP) ¥ EBABAE. 2TREENEHE, BARZERER
REiE, RBEZETIRGE, WHELHTN. fld, E2RESSD, BHERREER Softmax Fo MR
BE DM,

At ABENEE [F3) ? ANEBIBIRRAENE, RINAMNRMAIEE, BE—T. NRERNEEE, W
KAREERE; B, SrENEREERER,.

2 #HEEM (MSHERIEMRE)

FIAEEEMENEITEIUNAERE, U— 1 MERENEAF, RIGRA x B— A8, NE w 2Rk, £—=F
8 M = ol 2 4 b, RAERABCERHEM Sigmoid: o(2) = ==, B a) = o(zl1), FT—E%
M 2P = wl .l 4 b2, KB FA Softmax. MF ReLU BUE, f(2) = max(0,z), EEEEN,
BRRENS, FERO: BA x=[1,2], wi=[[0.5,0.3),[0.4,0.6]), b1=[0.1,0.2], M 21=[0.51+0.32+0.,
0.41+0.62+0.2]=[1.2,1.8], ReLU & al=[1.2,1.8].

PRARRBEEMVEELNEE, WFHE, IXBRKMRE: L = - ylog(y), R yREXRE,

[

21

23

25

27

29

31

33

2 BEEM (WSHWEIER) 2

$\hat{U}SRFTNEEE, CETBESHEROTN. WFENI, HHEEMSE: L= 13(y—g)?, HREM,
REEERIGKY, HAEENMEHERETERE, fI, REMRE—RINENBER 25 —
oL dan . 0: FRENIEEIRE. BETRERSK: v w-nlk, nB¥I%, SGD MBI
WEE, Adam £AHENEENYIXTRE. BRENEZERENE (Sigmoid HEBS) MBKE (B
BT KA), RelU FHUEIATEMR.

TERA NumPy MELRIA—NMERHZTHIIERG, X NREIRIAE R BB F R & M & @&

import numpy as np

def sigmoid(z):
return 1 / (L + np.exp(-np.clip(z, -250, 250))) # BHLEZEH

def sigmoid_derivative(a):

return a * (1 - a)

class SimpleNeuron:
def __init__(self, input_size):
self.W = np.random.randn(input_size, 1) * 0.01 # /I\FEAFIEIL
self.b = np.zeros((1, 1))

def forward(self, X):
self.z = np.dot(X, self.W) + self.b # z = Wx + b
self.a = sigmoid(self.z) # HCE

return self.a

def backward(self, X, y, output, learning_rate=0.01):
m = X.shape[0]

dz = output - y # WHIRE
di = np.dot(X.T, dz) / m # WNEHRE
do = np.sum(dz, axis=0, keepdims=True) / m #* REEE

self.W -= learning_rate * dW # SEFT
self.b -= learning_rate * db

return dWi, db

IER
X = np.array([[1, 2], [3, 4]]) # AR, 810 2 4
y = np.array([[1]), [0]]) # #5&

neuron = SimpleNeuron(2)

output = neuron.forward(X)

print("FUM,: ", output)

35

[

=

~
[

S
ol

3 MEE—THENSL (EERANTD) 3

dW, db = neuron.backward(X, y, output)
print("WNEBE,:", d)

XEAEELEX Sigmoid BiERHESH, SHATRAERE: o/(2) =o0(2)(1 —o(z)). SimpleNeuron 2
B NN E B R AR R, BIEEREHEAMAS z, BEEN a. RAEEITE dz=a-y (ZTH%
MSE &), A dW =X "T*dz/m (FIUHBE), db £, BHMABETHE. XNRFIBRT ZEIE—
F WA X (2#EK 24D . 5% y. #IFATE output. RAEHMSH. BITE, FSBIFTUNMENEIRZE,
BERMIZEAE. BEZRENR, MEELERD .

3 WEE-EHEME (SEEAN))

SR MITIB BT A. RE NumPy BTFitE, Matplotlib 4B, PyTorch fEifkikEi2fE (pip install torch
torchvision). Ef1A MNIST FEHFHIBEEN], EEE 6 HlILERKR, Sk 28x28 KEKE.
BIBETIMEEXEE: 3—HEERD (0] (PR 255), BF AR 784 #RAE, 1nE¥,A One-Hot 43 (W13
#7 [0,0,01,0,..]) . EEBLEERE: HAN 784 —»F2EE 30 >4t 10 (Softmax 92).
VEBREEFRERTETN, XXBIREK, RAEEEHNE. PyTorch A autograd BEIK S,
Dataloader #tENMNHEIE

TERETE MNIST 77352889 PyTorch i3, XMHAMEBEIR. EXERE, JI&H T,

import torch

import torch.nn as nn

import torch.optim as optim

from torchvision import datasets, transforms
from torch.utils.data import DatalLoader

import matplotlib.pyplot as plt

BUBMESTRIE
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize
— ((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform

—)

test_dataset = datasets.MNIST('data', train=False, transform=transform)

train_loader = DatalLoader(train_dataset, batch_size=64, shuffle=True)

test_loader = DatalLoader(test_dataset, batch_size=1000, shuffle=False)

RRIEN
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fcl = nn.Linear(28%28, 30) # AN 784 — 30
self.fc2 = nn.Linear(30, 10) # 30 — 10

21

23

25

27

29

31

33

35

37

39

a1

43

45

47

49

51

53

3 MEE—THENSL (EERANTD) 4

def forward(self, x):

x = x.view(-1, 28%28) # B

x = torch.relu(self.fcl(x)) # ReLU EJ&

x = torch.softmax(self.fc2(x), dim=1) # Softmax M=
return x

model = Net()
criterion = nn.CrossEntropylLoss() # X XE, BHEILIE One-Hot
optimizer = optim.Adam(model.parameters(), 1r=0.001) # Adam L{L2s

JIEIEF
epochs = 5
for epoch in range(epochs):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad() # EEHE
output = model(data) # HIF
loss = criterion(output, target) # 1%k
loss.backward() # &M
optimizer.step() # T
print(f 'Epoch{epoch+1}, Loss: {loss.item():.4Ff}")

T
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:

output = model(data)

pred = output.argmax(dim=1)

correct += pred.eq(target).sum().item()
accuracy = 100. * correct / len(test_loader.dataset)

print(f ' HHW=E: {accuracy:.2f}%")

R MEIEFFIE: transforms Y3—1k MNIST $5{& 01307, A% 0.3081, i#&EULil. DatalLoader #t
£ 64 #7K shuffle fE#l{L. Net A4 nn.Module, forward BFiAN. RelLU [&f#E/E. Softmax it
(dim="1 B34), CrossEntropylLoss WEBES LogSoftmax # NLLLoss, target BBBIFTETE
One-Hot, Adam #¥JHAIERIFFESE (self.fclweight &), IZH zero_grad ERIXEE, forward
18 output, loss itE (FLFx — > ylogy), backward itELEHE, step E#f. b epoch FiFfdh:
no_grad Z2E#EE, argmax ERAMEZ, eq tbIRIEMER, HEEVERZEE 95% L L, XMLEZEITE Colab

4 HMERIZSMHE (MAEIZE) 5

REIETT, TEEEN GitHub: https://github.com/example/nn-from-zero,
ML FERE. EMTUNLLE, FSfh4E plot loss B epoch T, fIAUEL.

4 BMEIGSHE (MNEIRAZE)

RACMEIRBIRFIEREX S, Dropout BENEFMHE T (¥ 0.2-0.5), BHLEEE, W nn.Dropout(0.2).
L2 IEMMEIIMNERR: 5k += A ||w||"2, PyTorch # optimizer B weight_decay=1e-4, #t2/3—1x
AEUERBAN: BN(z) = ==+ 6, M&EIE, nn.BatchNorm1d(30) fENEiE,

BEHARINFESIER (le-3#245). Batch Size (32-256). Epochs (10-100), Grid Search W&4H 5,
{8 Ray Tune E&%,

BhnER, SSRGS ERENEME, BRIEERE: & valloss b epoch RENMELE, KIAEMIE
B/EEIg5g (ANRBHLEEE: MNIST Bf) .

' FEEI CIFAR-10 #&E% (10 2, 32x32 RGB), T|EF 3072 #55| X\ CNN, B MLP MR IG5,

5 HBMMEME (CNN) SFEINIERGE T (GRIERYT R)

CNN £HE®KIZIT. BREREKSBRFAREIMEIE: it o,; = > > k- inpulitm, jin, HIEBSE/S0E,
€30 MaxPool T%#, H/.LE%, LeNet-5 &M CNN iR MNIST, PyTorch RfiliEHR Conv2d(1,6,5) —
ReLU — MaxPool2d — FC,

FFHIHERN RNN MBS : BERURTS hy = tanh(wphe 1 + wery), BRFEFIBERS%, LSTM Ni)iE: B
7 fe = o(wilhe—1,24]), EFEMIEIZ,

Transformer £ 45INFRS: Attention(Q, K, V) = softma:v(%)‘/, HTIHE, BEARNEBRER
##, BEE BERT/GPT,

6 SKFRNMASERE

HEMEIRTNE LTS HEHMHEAARIRS (CNN+ArcFace %), NLP #iE=RaH (LSTM+ EEH),
WERSA MLP U= &R (Wide&Deep 1&EH),

EZREF ONNX SHEHEZRIRE!, TensorFlow Lite #i#%zhis, Flask & Web API: from flask import Flask;
app.route(’/predict’, methods=['"POST’]) & model.predict(json &),

KREHTE . Goodfellow CREF>]) $%E, Andrew Ng Coursera %2, PyTorch X%,

7 #ig

BIIMEYHE TS, FEAEKk@EHF. MNIST 2Bk, KI5, 2 CNN Transformer Ri#iER, M,
REZEHEZNEIEE. T—%, S Kaggle ZFEW Titanic £HFFN, HENMATBMEEXEGRD ELSE.
REFRE, SNAHBER Al Hif! BREM: TH PhD, SEEMIEL,

8 MF 6

8 MR

BWEERE: §iE 2 =wld '+, RE 2L = 6'(a"1)T, KEBCE: Jupyter Notebook https://colab.re-
search.google.com/example, #H—%[Hi%: LeNet €. ResNet Skip Connection, F Colab &5k
%, EC: Epoch —RE#IBRF, BUERISINIELM.

