
1

WebGPU在 JavaScript中的应用

黄梓淳

Jan 06, 2026

WebGPU作为浏览器中新一代图形编程接口，其起源可以追溯到WebGL的局限性。WebGL虽然在过去十年
中推动了Web端 3D图形的发展，但其基于 OpenGL ES的高层抽象导致了性能瓶颈和跨平台兼容性问题。为
解决这些痛点，W3C GPU for the Web社区组启动了WebGPU项目，旨在提供更接近原生 GPU的低级 API。
2023年，随着 Chrome 113的正式支持，WebGPU进入了生产环境。目前，主要浏览器如 Chrome和 Edge
已全面兼容，Safari也提供了稳定支持，而 Firefox Nightly版本正在快速跟进。这种渐进式的浏览器支持标
志着WebGPU从实验性技术向主流工具的转变。
与WebGL相比，WebGPU的最大区别在于其更低级的设计理念。WebGL通过状态机管理 GPU资源，而
WebGPU采用显式命令编码和异步执行模型，避免了隐式状态变更带来的不确定性。更重要的是，WebGPU引
入了 Compute Shader，支持通用计算任务，这让浏览器首次具备了媲美 CUDA或Metal的并行计算能力。
在性能上，WebGPU可以实现更高的吞吐量，尤其在现代 GPU架构如 NVIDIA RTX系列或 Apple M芯片上，
帧率提升可达数倍。
在 JavaScript环境中使用WebGPU的理由显而易见。JavaScript作为浏览器脚本语言的主宰者，其单线
程事件循环模型与WebGPU的异步 Promise API完美契合。这意味着开发者无需学习新语言，即可在熟悉的
Web生态中解锁 GPU加速。想象一下，利用 Compute Shader在浏览器中实时处理百万级粒子模拟，或通过
Fragment Shader实现专业级图像后处理，这些原本需要桌面应用才能完成的计算如今触手可及。具体应用
场景包括高保真 3D渲染、实时图像处理如模糊和边缘检测、机器学习模型推理、复杂物理模拟如流体动力学，
以及海量数据的可视化如点云渲染。这些场景不仅提升了用户体验，还为Web应用开辟了新天地，例如在线游
戏、虚拟现实和数据仪表盘。
本文的目标是为前端开发者、图形编程爱好者和性能优化工程师提供一份从零到实战的指南。无论你是WebGL
老手还是初次接触 GPU编程，我们将逐步展开WebGPU的核心概念、入门实现、高级技术和实际项目。每个
关键步骤都配以完整、可运行的 JavaScript代码示例，并附带WGSL着色器代码。文章强调动手实践，每个
主要章节末尾设有小任务，帮助你立即应用所学。通过阅读，你不仅能掌握WebGPU API，还能理解其性能优
化之道，最终构建出高效的浏览器 GPU应用。

1 WebGPU 基础概念
WebGPU的核心架构围绕 GPU流水线构建，这是一个高度并行的处理链条。在渲染路径中，顶点着色器
（Vertex Shader）首先处理几何数据，如位置变换；随后片段着色器（Fragment Shader）为每个像素
计算颜色；此外，计算着色器（Compute Shader）独立于渲染管线，提供通用并行计算。关键对象包括
GPUDevice，它是所有 GPU操作的入口；GPUAdapter代表物理 GPU硬件；GPUSwapChain（现更名为
GPUCanvasContext）管理屏幕输出；GPUBuffer用于存储顶点数据或计算结果；GPUTexture处理图像数



1 WebGPU基础概念 2

据。这些对象通过异步 Promise链式调用创建，整个模型强调显式资源管理和命令提交，避免了WebGL中的
状态污染。
WebGPU的异步执行模型是其高效性的基石。所有资源获取如 requestAdapter()和 requestDevice()
都返回 Promise，命令通过 GPUCommandEncoder批量编码后提交到队列（GPUQueue）。这种设
计充分利用了现代浏览器的微任务调度，确保 JavaScript主线程不被阻塞。例如，初始化流程通常是
navigator.gpu.requestAdapter().then(adapter => adapter.requestDevice())，这是一个典型的链式异
步操作。
在浏览器兼容性方面，首先需检查 navigator.gpu是否存在，这是WebGPU支持的首要条件。考虑到当前
Safari和 Firefox的部分支持，生产环境应准备降级方案，如回退到WebGL。以下是一个基本的环境检测脚
本，我们逐行解读其逻辑。

1 async function checkWebGPUSupport() {

if (!navigator.gpu) {

3 console.error('WebGPU 不支持，请使用 Chrome 113+ 或 Edge');

return false;

5 }

const adapter = await navigator.gpu.requestAdapter();

7 if (!adapter) {

console.error('无兼容的 GPU 适配器');

9 return false;

}

11 const device = await adapter.requestDevice();

console.log('WebGPU 初始化成功，设备信息：', device);

13 return true;

}

这段代码首先检查浏览器是否暴露了 navigator.gpu接口，如果不存在则直接报错并返回 false。随后调用
requestAdapter()获取适配器，这是浏览器对可用 GPU的抽象。如果适配器为空，说明硬件不支持。最终
通过 requestDevice()创建设备实例，并打印其信息用于调试。这个函数是所有WebGPU应用的起点，体现
了异步检查的必要性。在不支持的环境中，可以 fallback到 Canvas 2D或WebGL，例如使用一个条件渲染
逻辑。
WGSL（WebGPU Shading Language）是WebGPU的着色器语言，与 GLSL相比，它采用了更现代的语
法设计，受 Rust和 HLSL启发。WGSL支持强类型系统、结构体和模块化函数，避免了 GLSL的弱类型陷
阱。存储类如@binding和@group用于绑定资源组，实现 uniforms和纹理的动态注入。基本语法包括
vec3<f32>表示 3D向量，mat4x4<f32>表示 4x4矩阵，以及@vertex和@fragment入口点。下面是
一个简单的顶点-片段着色器对，我们详细解析其结构。

@vertex

2 fn vs_main(@builtin(vertex_index) vertexIndex: u32) -> @builtin(position) vec4<f32> {

let positions = array<vec2<f32>, 3>(

4 vec2<f32>(0.0, 0.5),

vec2<f32>(-0.5, -0.5),



2 WebGPU入门：Hello Triangle 3

6 vec2<f32>(0.5, -0.5)

);

8 return vec4<f32>(positions[vertexIndex], 0.0, 1.0);

}

10

@fragment

12 fn fs_main() -> @location(0) vec4<f32> {

return vec4<f32>(1.0, 0.0, 0.0, 1.0); // 红色三角形
14 }

顶点着色器 vs_main使用@builtin(vertex_index)获取内置顶点索引，无需外部缓冲区，直接从数组中选
取预定义位置，形成一个三角形。返回的 vec4<f32>通过@builtin(position)映射到裁剪空间。片段着色器
fs_main则简单输出红色，每个像素填充 vec4(1,0,0,1)，@location(0)指定输出颜色目标。这个示例展示了
WGSL的简洁性：内置函数如 array<>和内置修饰符极大简化了 boilerplate代码。与 GLSL不同，WGSL强
制类型声明，提升了代码可维护性。
动手实践：在浏览器控制台运行上述检查函数，并编写一个返回WGSL字符串的模块化函数，用于后续管线
创建。

2 WebGPU 入门：Hello Triangle
WebGPU应用的起点是初始化 GPU上下文，这涉及适配器、设备和画布配置。以下是完整初始化代码，我们逐
段解读其执行流程。

async function initWebGPU(canvas) {

2 if (!navigator.gpu) throw new Error('WebGPU 不支持');

4 const adapter = await navigator.gpu.requestAdapter({

powerPreference: 'high-performance' // 优先高性能 GPU

6 });

if (!adapter) throw new Error('无 GPU 适配器');

8

const device = await adapter.requestDevice({

10 requiredFeatures: [], // 可扩展如 'texture-compression-bc'

requiredLimits: {} // 自定义限制
12 });

14 const context = canvas.getContext('webgpu');

const canvasFormat = navigator.gpu.getPreferredCanvasFormat();

16 context.configure({

device,

18 format: canvasFormat,



2 WebGPU入门：Hello Triangle 4

alphaMode: 'premultiplied' // 透明混合模式
20 });

22 return { device, context, canvasFormat };

}

首先检查 navigator.gpu并请求高性能适配器，powerPreference选项确保选择最强 GPU。随后创建设
备，传入空特征和限制以最大兼容性。获取画布的 webgpu上下文，并配置格式，通常为 ’bgra8unorm’。
configure()绑定设备和格式，为后续渲染准备 Swap Chain。这个初始化返回核心对象，后续命令将基于此
执行。
接下来创建渲染管线（Render Pipeline），这是WebGPU的核心抽象。管线封装了着色器、顶点布局和渲染
状态。

1 async function createPipeline(device, canvasFormat, wgslCode) {

const shaderModule = device.createShaderModule({

3 code: wgslCode // 上节的三角形 WGSL

});

5

const pipeline = device.createRenderPipeline({

7 layout: 'auto', // 自动推导绑定布局
vertex: {

9 module: shaderModule,

entryPoint: 'vs_main'

11 },

fragment: {

13 module: shaderModule,

entryPoint: 'fs_main',

15 targets: [{ format: canvasFormat }]

},

17 primitive: {

topology: 'triangle-list' // 三角形列表
19 }

});

21

return pipeline;

23 }

createShaderModule编译WGSL代码为 GPU可执行模块。createRenderPipeline指定顶点和片段入
口点，targets匹配画布格式，primitive定义绘制模式为 triangle-list，无需索引缓冲区。这个管线布局为
’auto’，浏览器自动处理绑定组兼容性。
渲染循环使用 Render Pass提交命令。以下是完整“Hello Triangle” Demo，我们逐步构建。



3 高级渲染技术 5

1 async function renderTriangle(canvas) {

const { device, context, canvasFormat } = await initWebGPU(canvas);

3 const wgsl = `// 上节 WGSL 代码 `;

const pipeline = await createPipeline(device, canvasFormat, wgsl);

5

function frame() {

7 const commandEncoder = device.createCommandEncoder();

const textureView = context.getCurrentTexture().createView();

9 const renderPass = commandEncoder.beginRenderPass({

colorAttachments: [{

11 view: textureView,

clearValue: { r: 0.0, g: 0.0, b: 0.0, a: 1.0 }, // 清空为黑色
13 loadOp: 'clear',

storeOp: 'store'

15 }]

});

17

renderPass.setPipeline(pipeline);

19 renderPass.draw(3, 1, 0, 0); // 绘制 3 个顶点，1 个实例
renderPass.end();

21

device.queue.submit([commandEncoder.finish()]);

23 requestAnimationFrame(frame);

}

25 frame();

}

27

// 使用：renderTriangle(document.getElementById('canvas'));

每帧创建 commandEncoder，开始 renderPass并绑定当前帧纹理视图。clearValue设置背景色，
draw(3,1,0,0)绘制一个三角形实例。endPass()和 queue.submit()提交命令到 GPU队列。requestAni-
mationFrame驱动循环。这个 Demo在支持的浏览器中将渲染红色三角形于黑色背景。
调试时，Chrome DevTools的 GPU Inspector可捕获帧图和资源使用。性能提示：避免在循环中创建
pipeline，应复用；批量命令以减少 submit()调用。
动手实践：复制代码到 CodePen，修改WGSL改变三角形颜色，并添加旋转变换（使用 uniform mat4）。

3 高级渲染技术
纹理与采样器是WebGPU渲染的基础，用于加载图像数据。首先创建纹理并上传像素数据。



3 高级渲染技术 6

async function createTextureFromImage(device, imageBitmap) {

2 const texture = device.createTexture({

size: [imageBitmap.width, imageBitmap.height, 1],

4 format: 'rgba8unorm',

usage: GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_DST

6 });

8 device.queue.copyExternalImageToTexture(

{ source: imageBitmap },

10 { texture },

[imageBitmap.width, imageBitmap.height]

12 );

14 return texture.createView();

}

createTexture指定尺寸、格式和用法（绑定与拷贝目标）。copyExternalImageToTexture异步上传
ImageBitmap，这是从 PNG/JPG创建的高效方式。返回的 View用于绑定组。
绑定组（Bind Group）管理 uniforms和纹理。假设有一个传递MVP矩阵的 uniform buffer。

1 function createBindGroup(device, pipeline, uniformBuffer, textureView, sampler) {

const bindGroupLayout = pipeline.getBindGroupLayout(0);

3 return device.createBindGroup({

layout: bindGroupLayout,

5 entries: [

{ binding: 0, resource: { buffer: uniformBuffer } },

7 { binding: 1, resource: textureView },

{ binding: 2, resource: sampler }

9 ]

});

11 }

entries数组映射WGSL中的@binding，每个资源按索引绑定。Sampler定义过滤模式，如 linear或
nearest。

3D场景引入相机和变换矩阵。透视投影矩阵可通过公式计算：P =


1

tan(fov/2)
0 0 0

0 1
tan(fov/2)

· aspect 0 0

0 0 f+n
n−f

2fn
n−f

0 0 −1 0

，
其中 fov为视野角，n/f为近远裁剪面。JavaScript中使用 Float32Array填充mat4x4<f32>。
光照模型如 Phong在片段着色器中实现：I = IaKa + IdKd(N · L) + IsKs(R · V)n，其中项分别表示环境、漫
反射和镜面反射。



4 计算着色器（Compute Shaders）：WebGPU的杀手锏 7

后处理效果通过多重渲染目标实现。先渲染场景到 offscreen纹理，再用全屏四边形应用 Fragment Shader。
例如，高斯模糊：

1 @fragment

fn fs_blur(@location(0) inColor: vec4<f32>) -> @location(0) vec4<f32> {

3 var color = vec4<f32>(0.0);

let weights = array<f32, 5>(0.227, 0.194, 0.121, 0.054, 0.016);

5 for (var i = 0u; i < 5u; i++) {

color += textureSample(t_input, s_linear, uv + vec2<f32>(f32(i - 2) * pixelSize.x,

↪→ 0.0)) * weights[i];

7 }

return color;

9 }

这个 shader在水平方向卷积，weights来自高斯核。通过两个 Pass（水平 +垂直）实现分离模糊。Bloom
类似，先提取亮部纹理再混合。
实例化渲染高效绘制大量对象，如粒子。通过 vertex buffer存储 per-instance数据，draw(6, particle-
Count)绘制 particleCount个实例，每个用 6顶点四边形。
动手实践：实现纹理加载并应用简单光照，扩展为旋转立方体，使用mat4变换。

4 计算着色器（Compute Shaders）：WebGPU 的杀手锏
Compute Pipeline与渲染管线不同，无需顶点/片段阶段，仅需计算着色器。Workgroup是线程组单位，如
@compute @workgroup_size(8,8)定义 64线程块，并行执行。
创建 Compute Pipeline：

1 function createComputePipeline(device, wgslCode) {

const module = device.createShaderModule({ code: wgslCode });

3 return device.createComputePipeline({

layout: 'auto',

5 compute: {

module,

7 entryPoint: 'cs_main'

}

9 });

}

图像处理是经典案例，如灰度转换。以下WGSL使用 Sobel算子检测边缘。

@group(0) @binding(0) var inputTex: texture_2d<f32>;

2 @group(0) @binding(1) var outputTex: texture_storage_2d<rgba8unorm, write>;

@group(0) @binding(2) var<uniform> params: Params;

4



5 实际应用案例与实战项目 8

@compute @workgroup_size(8,8)

6 fn cs_sobel(@builtin(global_invocation_id) id: vec3<u32>) {

let coords = vec2<i32>(i32(id.xy));

8 let x = vec2<f32>(-1.0, 1.0);

let y = vec2<f32>(-1.0, 1.0);

10 let gx = 0.0, gy = 0.0;

for (var i = 0; i < 2; i++) {

12 for (var j = 0; j < 2; j++) {

let sample = textureLoad(inputTex, coords + vec2<i32>(i,j), 0).rgb;

14 gx += f32(sample.r + sample.g + sample.b) * x[i] * y[j];

gy += f32(sample.r + sample.g + sample.b) * x[j] * y[i];

16 }

}

18 let magnitude = sqrt(gx*gx + gy*gy);

textureStore(outputTex, id.xy, vec4<f32>(magnitude, magnitude, magnitude, 1.0));

20 }

每个线程加载 2x2邻域，计算梯度幅度并存储到 outputTex。dispatchWorkgroups(width/8, height/8)
启动网格。
粒子模拟如 N-body，使用 buffer存储位置和速度。矩阵运算 GEMM在 GPU上比 JavaScript快数百倍。
数据传输优化使用 staging buffer：先拷贝到 staging，再mapAsync读回 JS。

async function readComputeResult(device, buffer) {

2 const staging = device.createBuffer({

size: buffer.size,

4 usage: GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST

});

6 // 在命令中 copy buffer to staging

device.queue.copyBufferToBuffer(buffer, 0, staging, 0, buffer.size);

8 await staging.mapAsync(GPUMapMode.READ);

const data = new Float32Array(staging.getMappedRange());

10 staging.unmap();

return data;

12 }

动手实践：实现灰度 Compute Shader，比较 JS循环 vs GPU时间。

5 实际应用案例与实战项目
实时数据可视化利用 GPU渲染百万点云。将点数据上传 GPUBuffer，实例化绘制。
机器学习推理集成 TensorFlow.js WebGPU后端，MobileNet模型加载后推理图像分类，Compute Shader



6 性能优化与最佳实践 9

加速卷积层。
游戏开发中，2D Sprite使用纹理 atlas和实例化；物理引擎如布料用 Compute Shader模拟 Verlet积分。
创意应用包括WebRTC视频流 + Fragment Shader滤镜，以及Web Audio FFT数据用 Compute渲染
波形。
每个案例强调 HTTPS部署和性能对比：WebGPU帧率往往是WebGL的 2-5倍。源码见 GitHub repo示例。
动手实践：构建粒子系统 Demo，对比 CPU版本 FPS。

6 性能优化与最佳实践
内存管理需显式销毁 buffer：device.destroy()。命令优化使用 bundle：pipeline.createRender-
BundleEncoder()预录制重复 Pass。
跨平台注意 Apple Silicon的 workgroup大小限制，避免动态分支用 uniform控制流。
工具如 Dawn提供原生实现，Naga转译WGSL，Spector.js捕获帧。
动手实践：优化 Hello Triangle为 60fps稳定循环。

7 生态系统与未来展望
现有库如 webgpu-utils简化 buffer创建，three.js r160+支持WebGPU渲染器。集成 React Three
Fiber实现声明式 3D。
未来WebGPU 2.0或引入Mesh Shaders和 Ray Tracing，推动浏览器实时光追。

8 结论与资源推荐
WebGPU开启浏览器 GPU编程新时代，从渲染到计算全方位提升性能。立即实践，加入WebGPU Discord。
资源：官方文档 https://gpuweb.github.io/gpuweb/，样本 https://webgpu.github.io/webgpu-
samples/。


