
1

HTML条件懒加载技术

黄梓淳

Jan 11, 2026

在现代网页开发中，性能优化已成为不可或缺的核心环节。首屏加载时间直接影响用户体验，而 Core Web
Vitals等指标更是与搜索引擎排名紧密相关。传统的懒加载技术虽然能够延迟非关键资源的加载，但往往采用一
刀切的策略，无论资源是否真正需要，都会无条件推迟加载。这种方法在复杂场景下显得力不从心，比如用户可
能永远不会滚动到页面底部，或者某些资源需要在特定交互后才加载。这时，条件懒加载技术应运而生，它根据
视口进入、用户交互、网络状态等多重条件智能决定加载时机，从而实现更精细的性能控制。
本文旨在系统介绍 HTML原生与高级条件懒加载技术，从基础原理到实际应用，提供详尽的代码示例和最佳实
践。通过这些内容，读者能够掌握如何将懒加载从简单延迟升级为智能条件触发，帮助网站显著提升加载速度和
用户满意度。
本文面向前端开发者、性能优化工程师以及网站运维人员，无论你是初学者希望快速上手，还是专家寻求深入优
化，都能从中获益。

1 2. 基础概念与传统懒加载回顾
懒加载的核心原理在于推迟非关键资源的加载，将有限的带宽和计算资源优先分配给首屏内容。通常加载时机分
为三个阶段：页面 onload时立即加载、元素进入视口时加载，以及用户主动交互后加载。这种分层策略有效降
低了初始加载负担，但传统实现依赖 JavaScript库或简单属性，灵活性不足。
HTML5引入了原生懒加载属性 loading=lazy，适用于 和 <iframe>元素。以图片为例，以下代码展
示其基本用法：

1

<iframe src="heavy-content.html" loading="lazy"></iframe>

这段代码中，loading=lazy指示浏览器仅在元素接近视口时才加载资源。目前主流浏览器支持良好，包括
Chrome 76+、Firefox 75+和 Safari 15.4+。其优点在于零配置、无需额外 JavaScript，开箱即用；缺点
则是缺乏条件控制，仅基于视口距离，无法结合用户行为或网络状态，且在不支持的旧浏览器中会降级为立即
加载。
相比之下，传统 JavaScript懒加载库提供了更多选项。Lozad.js以 0.9KB的微型体积实现无依赖图片懒加
载，LazyLoad则功能更丰富、体积约 3KB，适合复杂场景。而原生 IntersectionObserver API体积为零，
是现代浏览器的首选。

2 3. 条件懒加载的核心技术：Intersection Observer API 2

2 3. 条件懒加载的核心技术：Intersection Observer API
Intersection Observer API是条件懒加载的基石，它允许开发者监听目标元素与视口或容器元素的相交变
化，而无需持续监听 scroll事件，从而避免性能开销。该 API的核心概念包括 root（观察根元素，默认视口）、
threshold（相交比例阈值数组，如 [0, 0.5, 1]）和 rootMargin（扩展或收缩根边界，如 10px）。
基本用法如下：

const observer = new IntersectionObserver(callback, options);

2 observer.observe(targetElement);

这里，callback是一个函数，接收 entries数组，每个 entry包含 isIntersecting、intersectionRatio
等信息；options对象配置观察参数。一旦创建观察器并调用 observe，浏览器会异步报告相交变化。需要注
意的是，unobserve方法用于停止观察特定元素，以防止内存泄漏。
基于此，实现视口条件懒加载非常直观。考虑图片懒加载场景：

function lazyLoadImage(img) {

2 const observer = new IntersectionObserver((entries) => {

entries.forEach(entry => {

4 if (entry.isIntersecting) {

const img = entry.target;

6 img.src = img.dataset.src;

img.classList.remove('lazy');

8 observer.unobserve(img);

}

10 });

});

12 observer.observe(img);

}

这段代码逐行解读：首先为单个 img元素创建观察器，回调函数遍历 entries，当 isIntersecting为 true
时，表示图片进入视口。此时，从 data-src属性提取真实源地址赋值给 src，移除 lazy类（通常用于占位样
式），并调用 unobserve停止观察，避免重复触发。该实现比传统 scroll监听高效数倍，且支持批量应用，如
document.querySelectorAll('.lazy').forEach(lazyLoadImage)。

3 4. 高级条件懒加载技术
多条件组合是条件懒加载的进阶形式，将视口进入、用户交互和网络状态等因素整合。例如：

1 const conditions = {

inViewport: false,

3 userInteracted: false,

networkGood: navigator.connection?.effectiveType === '4g'

4 5. 实际应用场景与代码示例 3

5 };

7 function checkAllConditions() {

return conditions.inViewport && conditions.userInteracted && conditions.networkGood;

↪→
9 }

此代码定义了一个状态对象 conditions，inViewport通过 IntersectionObserver更新，userInteracted
可监听 click或 mousemove事件设置，networkGood利用 Network Information API检查连接类型。只有
所有条件为 true时，才调用 checkAllConditions触发加载。这种与逻辑确保资源仅在理想条件下加载，极
大减少无效请求。
优先级机制进一步优化体验。高优先级资源如首屏轮播图在视口进入即加载，中优先级如文章插图等待滚动到
50%位置，低优先级如模态框内容则需用户点击。通过 threshold数组实现，例如 threshold: [0.5]表示
50%可见时触发。
预加载是预测性条件懒加载的典型应用：

1 function predictiveLazyLoad() {

const prefetchObserver = new IntersectionObserver((entries) => {

3 entries.forEach(entry => {

if (entry.intersectionRatio > 0.1) {

5 preloadImage(entry.target.dataset.src);

}

7 });

});

9 }

解读此函数：观察器在相交比例超过 10%时调用 preloadImage，后者可使用 <link rel=preload>或 new

Image()预取资源。这种提前策略在用户滚动速度快时尤为有效，避免了可见延迟，同时 rootMargin: 100px

可进一步扩展触发范围。

4 5. 实际应用场景与代码示例
图片画廊常需混合条件懒加载。HTML结构中通过 data-condition标记触发器：

1 <div class="gallery">

3

</div>

对应 JavaScript根据属性动态绑定观察器或事件监听，实现视口触发与悬停触发的统一管理。
无限滚动场景依赖哨兵元素（sentinel）：

function infiniteScrollLazyLoad() {

5 6. 性能优化与最佳实践 4

2 const sentinel = document.querySelector('.sentinel');

const observer = new IntersectionObserver(async (entries) => {

4 if (entries[0].isIntersecting) {

const newImages = await fetchMoreImages();

6 newImages.forEach(loadImagesWithConditions);

}

8 });

observer.observe(sentinel);

10 }

此代码中，哨兵元素置于内容底部，当其进入视口时异步调用 fetchMoreImages获取新图片，并应用条件加载
函数。async/await确保数据加载后立即渲染，避免阻塞主线程。
组件级条件懒加载适用于Web Components：

class ConditionalLazyComponent extends HTMLElement {

2 connectedCallback() {

this.loadWhenVisible();

4 }

}

在 connectedCallback中初始化观察器，实现影子 DOM内的独立懒加载，完美隔离样式和逻辑。

5 6. 性能优化与最佳实践
加载策略优化至关重要。渐进式加载先渲染低分辨率占位图，再替换高清版；批量加载限制每秒最多 10张图片，
避免突发流量峰值；优先级队列确保关键路径资源先行。
错误处理不可忽视，特别是浏览器兼容性降级：

1 if (!('IntersectionObserver' in window)) {

document.querySelectorAll('img[data-src]').forEach(img => {

3 img.src = img.dataset.src;

});

5 }

这段代码检查 API可用性，若不支持则立即加载所有图片，确保降级体验流畅。同时，添加 onerror处理加载
失败，回退到默认图。
性能监控利用 PerformanceObserver：

1 const observer = new PerformanceObserver((list) => {

list.getEntries().forEach((entry) => {

3 console.log('Lazy load:', entry.name, entry.loadTime);

});

5 });

6 7. 与现代框架集成 5

observer.observe({entryTypes: ['resource']});

观察器监听 resource类型条目，记录懒加载资源的名称和加载时间，便于分析瓶颈。

6 7. 与现代框架集成
在 React中，条件懒加载结合 Hook实现：

const ConditionalLazyImage = ({ src, condition }) => {

2 const [loaded, setLoaded] = useState(false);

const ref = useRef();

4

useEffect(() => {

6 const observer = new IntersectionObserver((entries) => {

if (entries[0].isIntersecting && condition()) {

8 setLoaded(true);

}

10 });

if (ref.current) observer.observe(ref.current);

12 return () => observer.disconnect();

}, []);

14 return ;

};

useState管理加载状态，useEffect创建观察器，仅当视口相交且自定义 condition为 true时设置
loaded，并在卸载时清理。useRef确保 ref绑定正确。
Vue 3通过组合式 API简化：

1 <template>

3 ↙template>

<script setup>

5 import { ref, onMounted } from 'vue';

const shouldLoad = ref(false);

7 const realSrc = ref('');

onMounted(() => {

9 const observer = new IntersectionObserver(([entry]) => {

if (entry.isIntersecting) shouldLoad.value = true;

11 });

observer.observe(el);

13 });

↙script>

7 8. 测试与调试工具 6

响应式 shouldLoad驱动模板渲染，onMounted初始化观察器，实现声明式条件加载。
Next.js可集成其内置 <Image>组件，进一步结合 loading=lazy和自定义条件。

7 8. 测试与调试工具
Chrome DevTools是调试懒加载的利器。在 Network面板过滤 Lazy load状态，观察请求时机；在
Performance面板录制滚动会话，分析加载分布。
Lighthouse提供自动化审计，量化懒加载对 LCP的贡献。
自动化测试使用 Playwright：

await expect(page.locator('img.lazy')).toHaveCount(10);

2 await page.evaluate(() => window.scrollTo(0, 1000));

await expect(page.locator('img[src*="photo"]')).toHaveCount(5);

依次断言初始懒加载图片数，模拟滚动，验证加载结果，确保跨浏览器一致性。

8 9. 未来趋势与标准化进展
HTML标准正推进 loading=idle属性，仅在浏览器空闲时加载，进一步细化时机。条件加载原生属性如
loading=when-visible-and-clicked也在讨论中。
懒加载直接优化Web Vitals：LCP受益于关键图片优先，FID通过减少 JS阻塞改善，CLS则靠占位符稳定
布局。
PWA中，条件懒加载与 Service Worker结合，实现离线预测加载。
条件懒加载从原生 loading=lazy演进到 IntersectionObserver多条件组合，极大提升了网页性能。通过本
文代码和实践，读者可立即应用这些技术。
快速实施时，先评估页面性能，实现基础观察器，添加条件逻辑，跨网络测试，并持续监控指标。
进一步阅读可参考MDN IntersectionObserver文档、Web.dev懒加载指南，以及WHATWG HTML规范
草案。

