
1

Git变基（Rebase）基础教程

叶家炜

Jan 13, 2026

Git变基是一种强大的工具，它将一个分支的提交「重新应用」到另一个分支上，从而实现干净的线性历史记录。
这种操作不同于传统的合并，它能避免多余的合并提交，让项目历史看起来更加简洁明了。变基的核心在于重新
排列提交序列，使分支间的关系更直观。
相比于merge操作，变基的主要优势在于保持历史线性。Merge会创建一个额外的合并提交，记录两个分支
的融合过程，这在多人协作时可能导致历史记录变得杂乱。而变基则将 feature分支的变更「移植」到主分支
顶端，形成一条平滑的直线。这种方式特别适合个人开发或清理提交历史，但需要注意它会改写提交历史，因此
不适用于已共享的分支。
变基与merge的直观对比可以想象为：merge像两条河流汇合形成一个分叉口，而变基则像将一条支流顺直
地接续到主河道上。前者保留了所有历史痕迹，后者追求简洁的单一线性路径。这种差异在长期项目中尤为明
显，线性历史更容易 bisect查找问题。
本文面向 Git新手到中级用户，如果你已经掌握基本的 commit、branch和 checkout命令，就可以轻松跟
进。阅读前提包括理解 Git的基础工作流，如创建分支和切换分支。没有这些基础，建议先复习 Git官方入门
文档。
文章结构从基础概念入手，逐步深入到实际操作、高级技巧、问题排查和最佳实践，最后提供快速参考和练习建
议。通过层层递进，你将掌握变基的全貌。

1 变基基础概念
变基的工作原理本质上是将当前分支的提交从其原有基点「剥离」，然后逐一重新应用到目标分支的顶端。具体
过程是：Git首先找到两个分支的共同祖先提交，然后将当前分支独有的提交「暂停」，切换到目标分支，再按顺
序「replay」这些提交。每个 replay过程相当于 cherry-pick一个提交，如果有冲突则暂停等待用户解决。
这种「移植」机制确保了提交内容的完整性，但会生成全新的提交哈希值。
常见变基场景包括当前分支变基到目标分支，使用命令 git rebase <target>，这会将当前分支的变更叠加到
target分支上。另一个场景是交互式变基，通过 git rebase -i可以编辑提交序列，比如合并或删除提交。
这两种场景覆盖了 90%的使用需求。
变基过程中有三种状态：正在进行时，Git会标记 rebase状态文件；已暂停状态通常因冲突发生，需要手动干
预；已完成状态则一切顺畅，历史已重写。理解这些状态有助于诊断问题。
关键术语中，Base Commit是变基的基准提交，即目标分支的顶端；Replay表示重新应用提交的过程；Pick
是交互式变基中的默认动作，意为保持原样；Squash则将当前提交合并到上一个提交中，结合它们的变更和
日志。



2 环境准备 2

2 环境准备
要开始学习变基，首先创建示例仓库。执行以下命令序列：git init rebase-demo，然后 cd rebase-demo。
接下来创建初始提交，例如触碰一个文件 echo Initial commit > README.md并 git add .，最后 git

commit -m Initial commit。这个仓库将作为所有演示的基础。
在仓库中创建测试分支结构：在main分支上添加几个提交，如 echo Main change 1 >> README.md、
git add .、git commit -m Main change 1，重复几次。然后创建 feature分支 git checkout -b

feature，并在其上添加独有提交，如 echo Feature change >> README.md、git commit -m Feature

change。现在你有main和 feature两条平行分支，完美模拟真实开发场景。
为提升体验，配置 git config --global rebase.autoStash true，这会在变基时自动暂存未提交变更，避
免手动 stash。推荐工具包括 Git GUI用于可视化历史，以及 VS Code的 Git Graph扩展来观察分支变化。

3 基本变基操作

3.1 简单变基

简单变基是最基础的操作，假设你在 feature分支上，执行 git checkout feature，然后 git rebase

main。这个命令的解读如下：首先切换到 feature分支，确保它是干净的；然后 rebase main告诉 Git将
feature的提交从main的顶端重新应用。Git会找到main和 feature的分叉点，将 feature之后的提交逐
一 replay到main顶端。如果无冲突，feature分支现在「骑」在main上，形成线性历史。
预期结果是：变基前，main和 feature平行；变基后，feature的提交直接接在main末尾，原有 feature
基点被遗弃。新提交有全新哈希，但内容相同。这种操作常用于将本地 feature同步到远程main前，保持干
净历史。

3.2 处理变基冲突

变基冲突发生在 replay提交时，变更与目标分支重叠。机制是 Git尝试应用补丁，如果文件行冲突则标记
«««<等符号。解决步骤：先 git status，它会显示「rebase in progress」和冲突文件；编辑冲突文件，
手动选择保留哪部分代码；然后 git add . 标记已解决；最后 git rebase --continue继续下一个提交。
完整示例：假设main有 echo foo > file.txt，feature有 echo bar >> file.txt，变基时冲突。编辑后
文件可能成 foo\nbar，add并 continue。整个过程确保变更不丢失，但需仔细审查。

3.3 中止变基

如果冲突太棘手，使用 git rebase --abort。这个命令解读为：中止当前变基，恢复到 rebase开始前的分
支状态，包括 HEAD和索引。它会删除 rebase状态文件，一切如初。使用时机是当你不确定如何解决冲突，或
变基策略错误时；必须使用则是如果误操作导致不可逆混乱。



4 交互式变基 3

4 交互式变基

4.1 基本语法

交互式变基通过 git rebase -i HEAD~3编辑最近 3个提交。这个命令解读：-i启用交互模式，HEAD~3指
定从倒数第三个提交开始的范围。Git会弹出编辑器，显示提交列表，默认全为 pick。保存退出后，Git按指令
执行。
另一种是 git rebase -i main，将当前分支变基到 main前，同时交互编辑。这适合将 feature的提交精简
后叠加到main。

4.2 常用操作命令详解

交互式变基的核心是编辑器中的命令。pick保持提交不变，是默认选项，用于正常保留。reword只修改提交
信息，如修正拼写，Git会暂停让你编辑消息后继续。edit在该提交处暂停，允许修改代码或作者，然后 git

rebase --continue。
squash将当前提交合并到上一个，结合变更并让你编辑合并消息，常用于清理小修复。fixup类似 squash但
丢弃当前提交信息，直接融入上一个，适合临时提交。drop完全删除提交，用于移除错误。

4.3 实战案例

修改最近提交信息：git rebase -i HEAD~1，将 pick改为 reword，保存后编辑消息如从「Fix bug」改为
「修复登录验证 bug」，继续即可。
合并多个小提交：git rebase -i HEAD~3，将后两个改为 squash，编辑器出现合并消息界面，合成「feat:
添加用户模块」。
删除错误提交：git rebase -i HEAD~4，将目标行改为 drop，保存后该提交消失。
分离大提交：先 git reset HEAD~1，然后重新 commit分拆，最后 git rebase -i HEAD~n调整顺序。

5 高级变基技巧

5.1 变基到上游分支

git rebase --onto main featureA featureB将 featureB从 featureA之后的提交变基到main上。
解读：--onto main指定新基点，featureA是旧基点分界，featureB是目标分支。这常用于将变更从一个分
支「移植」到另一个上游，常在多分支协作中应用。

5.2 保留特定提交

git rebase --onto new-base old-base将当前分支从 old-base之后的提交应用到 new-base。解读：
old-base是保留前缀的分界，新提交只 replay old-base之后部分。这用于精确控制历史片段。



6 常见问题与解决方案 4

5.3 批量修改提交作者

git rebase -i --exec git log --oneline -1 HEAD~5在每个 pick后执行命令。解读：-i交
互，--exec指定每次暂停运行 git log --oneline -1查看最新提交，HEAD~5范围为最近 5个。实际中
可换成 git commit --amend --author=New Author批量改作者。

5.4 变基公共分支的最佳实践

绝对不要对已推送公共分支变基，因为它改写历史会导致他人拉取混乱。如果必须推送，使用 git push

--force-with-lease，它检查远程是否变化，安全覆盖。

6 常见问题与解决方案
遇到「Cannot rebase: already in progress」是因为变基未完成，使用 git rebase --abort清理或
--continue推进。冲突解决后提交丢失可能是未正确 continue，检查 git reflog找到旧 HEAD并 reset恢
复。变基后历史混乱通常是对公共分支操作，重置 git reset --hard origin/main。交互式保存失败源于
编辑器，配置 git config --global core.editor code --wait解决。

7 最佳实践与注意事项
变基推荐用于个人分支和清理历史，如 feature分支变基前推 main。禁止用于已推送公共分支或共享分支，以
免团队冲突。在团队中，策略是 feature变基到main后merge。变基前检查清单：确认分支干净、无未推提
交、备份 reflog。
与 Git Flow结合，在 release前变基 feature；GitHub Flow中，PR前变基保持线性。

8 快速参考命令表
基础变基：git rebase main将当前变基到 main；git rebase --abort中止；git rebase --continue

继续。
交互式：git rebase -i HEAD~n编辑最近 n个；git rebase -i --autosquash自动处理 fixup。
高级：git rebase --onto A B C将 C从 B到 A；git push --force-with-lease安全推送。

9 实践练习
练习 1：基础变基，在示例仓库 git checkout feature、git rebase main，观察 git log --oneline

--graph。
练习 2：交互式合并，在 feature添加 3小提交，git rebase -i HEAD~3 squash后两个。
练习 3：制造冲突，编辑相同行后解决并 continue。
练习 4：故意出错，用 git reflog恢复。完整仓库可在 GitHub rebase-demo下载实践。



10 结论 5

10 结论
变基关键要点：线性历史、交互编辑、冲突处理、安全推送。它的价值在于干净历史促进高效协作。下步学习
Git LFS或 Submodules。鼓励立即实践，形成肌肉记忆。

11 附录
图形工具如 GitKraken可视化变基。官方文档：git rebase --help。常见错误：NO-REBASE-OPTION用
abort；FAQ示例：变基是否改哈希？是，新提交全新 ID。


