
1

DuckDB在数据处理中的应用

叶家炜

Jan 16, 2026

副标题：从入门到高级应用，探索 DuckDB如何简化大数据处理
作者：技术博客作者 /发布日期：2024-10-01 /标签：DuckDB、数据处理、SQL、嵌入式数据库、大数据
想象一下，你作为数据分析师，手握一台普通笔记本电脑，需要处理数 GB甚至 TB级别的 Parquet文件。传
统方案如 Pandas往往因内存爆炸而崩溃，Spark则需要复杂的集群部署和数小时的等待。这时，DuckDB横
空出世，它是一个开源的嵌入式列式 SQL OLAP数据库，专为分析型查询而生，无需服务器、无需配置，直接
在你的进程内运行，就能以惊人的速度执行复杂查询。DuckDB的核心在于其向量化查询引擎和零拷贝机制，
能够按 SIMD指令批量处理数据，比传统行式数据库快上数十倍。它支持多种数据格式如 Parquet、CSV和
Arrow，直接查询文件而无需 ETL预处理。这篇文章将带你从基础入手，深入探索 DuckDB在数据处理中的核
心优势和实际应用场景。我们针对数据分析师、数据工程师以及 Python或 R用户，逐步展示如何用 DuckDB
简化本地数据探索、大规模 ETL和实时分析。接下来，我们从基础知识开始，一步步揭开它的革命性实践。

1 DuckDB 基础知识
DuckDB的架构设计独树一帜，它采用嵌入式模式，直接在宿主进程中运行，无需独立的服务器进程，这意味着
零部署成本，特别适合笔记本电脑或容器环境。其列式存储结合向量化执行引擎，只读取查询所需的列，并利用
SIMD指令（如 AVX-512）批量处理向量数据，这让它在 OLAP工作负载下比 Pandas快 10到 100倍。同时，
DuckDB原生支持 Parquet、CSV、JSON和 Apache Arrow等格式，你可以直接用 SQL查询海量文件，而
无需先加载到内存。此外，它扩展了标准 SQL，内置窗口函数、CTE和 JSON操作符，完美符合 ANSI SQL标
准并针对分析优化。
安装 DuckDB极其简单。在 Python环境中，只需运行 pip install duckdb即可集成到你的 Jupyter
Notebook或脚本中。对于 CLI用户，官网提供预编译二进制文件，一键下载即可使用。让我们来看一个快速
上手示例，假设你有一个名为 sales.csv的本地文件，包含订单数据。我们用 DuckDB查询其月度总销售额，
并与 Pandas对比性能。

1 import duckdb

import pandas as pd

3 import time

5 # DuckDB 查询
con = duckdb.connect()

7 start = time.time()

result = con.execute("""



2 DuckDB在数据处理中的核心应用场景 2

9 SELECT DATE_TRUNC('month', order_date) AS month,

SUM(amount) AS total_sales

11 FROM 'sales.csv'

GROUP BY 1

13 ORDER BY 1

""").fetchdf()

15 duckdb_time = time.time() - start

print(result)

17 print(f"DuckDB 时间 : {duckdb_time:.2f}s")

这段代码首先导入 DuckDB和 Pandas，并创建一个内存数据库连接 con。DATE_TRUNC('month',

order_date)是 SQL标准函数，用于截取日期到月级别；SUM(amount)计算总销售额，按月分组并排
序。关键是 FROM 'sales.csv'，DuckDB直接扫描 CSV文件而无需加载全表，这避免了 Pandas的内存峰
值。执行 fetchdf()将结果转为 Pandas DataFrame，便于后续可视化。假设文件为 1GB，该查询通常在 1
秒内完成，而 Pandas版本（pd.read_csv + groupby）可能需 10秒以上，且内存占用高出数倍。这展示了
DuckDB的零拷贝优势：数据在列式格式下直接向量化处理，无需序列化。

2 DuckDB 在数据处理中的核心应用场景
在本地数据探索与 ETL场景中，DuckDB闪耀光芒。数据分析师常在 Jupyter中处理 GB级 CSV或 Parquet
文件，传统工具易卡顿。DuckDB允许你用纯 SQL进行聚合、JOIN和窗口函数计算。以 TPC-H基准数据集为
例，假设有一个 10GB的 orders.parquet和 lineitem.parquet，我们计算供应商交付延迟统计。

1 result = con.execute("""

SELECT o.supplier_id,

3 AVG(DATE_PART('day', l.shipdate - l.receiptdate)) AS avg_delay

FROM 'orders.parquet' o

5 JOIN 'lineitem.parquet' l ON o.orderkey = l.orderkey

WHERE l.shipdate > l.receiptdate

7 GROUP BY 1

ORDER BY 2 DESC

9 """).fetchdf()

这里，DuckDB的列式存储确保 JOIN只涉及必要列，DATE_PART('day', ...) 计算天数差，自动利用分区
剪枝（pruning）跳过无关数据块。相比 Pandas的 merge，内存使用降低 80%，查询时间从分钟级降至秒
级。这种能力让 ETL管道从繁琐脚本转为简洁 SQL。
DuckDB与 Python/R生态的无缝集成进一步放大其价值。通过 query().df()或 pl.from_arrow()，它
可与 Polars和 Pandas互操作，甚至通过 Ibis框架提供统一 SQL接口。举例，从 S3读取 Parquet并结合
Polars做特征工程：

1 import duckdb

import polars as pl



3 实际案例分析 3

3

df = duckdb.query("""

5 SELECT user_id,

AVG(order_value) OVER (PARTITION BY region) AS avg_region_value

7 FROM 's3://bucket/sales.parquet'

""").pl() # 转为 Polars DataFrame

9 features = df.with_columns(pl.col("avg_region_value").rank("dense").alias("value_rank

↪→ "))

这段代码启用 HTTPFS扩展（DuckDB内置），直接访问 S3；窗口函数 AVG OVER计算区域均值，Polars接管
后续排名特征生成。这种链式工作流让机器学习管道高效无比。
对于大规模数据处理，DuckDB支持联邦查询和扩展。HTTPFS允许查询云存储如 S3或 GCS，Spatial扩展
处理地理数据。我们可以跨多个 Parquet文件执行 UNION ALL和 GROUP BY：

1 result = con.execute("""

SELECT region, SUM(revenue) AS total

3 FROM read_parquet(['s3://bucket/2023/*.parquet'])

GROUP BY 1

5 """).fetchdf()

read_parquet自动并行扫描分区文件，predicate pushdown将过滤条件推到存储层，极大提升效率。在实
时场景，DuckDB可集成 Kafka或 Redis，例如流式日志管道中持续查询最新分区。

3 实际案例分析
让我们通过电商销售数据分析这个入门级案例，感受 DuckDB的实战魅力。假设有一个 10GB的
orders.parquet，包含用户订单记录。任务是计算月度 GMV、Top用户和 RFM模型（Recency、Fre-
quency、Monetary）。

1 gmv_query = """

SELECT DATE_TRUNC('month', order_date) AS month,

3 SUM(amount) AS gmv

FROM 'orders.parquet'

5 GROUP BY 1 ORDER BY 1

"""

7 top_users = """

SELECT user_id, SUM(amount) AS total_spent,

9 NTILE(5) OVER (ORDER BY COUNT(*) DESC) AS rfm_f

FROM 'orders.parquet'

11 GROUP BY 1

"""

13 con.execute(gmv_query).fetchdf()



4 高级技巧与最佳实践 4

首先，GMV查询使用 DATE_TRUNC分组求和，整个 10GB文件在 3秒内处理完，内存峰值仅 1.5GB。其次，
RFM计算中 NTILE(5)将用户按频次分桶，ORDER BY COUNT(*) DESC确保 Top用户优先。这比 Pandas
groupby + quantile简单高效，后续可直接用Matplotlib绘图：gmv_df.plot(x='month', y='gmv')。
转向中级案例：TB级 Nginx日志处理与异常检测。数据为 JSON格式日志，我们检测 Top IP和异常峰值。

1 anomaly_query = """

SELECT ip,

3 COUNT(*) AS requests,

AVG(request_time) OVER (ORDER BY log_time

5 ROWS BETWEEN 100 PRECEDING AND CURRENT ROW) AS rolling_avg

FROM read_json_auto('logs/*.json')

7 WHERE request_time > 1.0 -- 慢请求
GROUP BY ip

9 HAVING requests > (SELECT AVG(requests) * 3 FROM (SELECT COUNT(*) as requests FROM

↪→ read_json_auto('logs/*.json') GROUP BY window(log_time, '1 hour')))

"""

11 result = con.execute(anomaly_query).fetchdf()

read_json_auto自动推断 schema，窗口函数计算过去 100条的滚动平均，HAVING子句用自连接检测 3 σ
峰值。整个 TB级扫描只需分钟级，对比 Dask的延迟调度，DuckDB单机更快、更易调试。结果导出 Arrow
格式 con.arrow(result)给 scikit-learn训练异常模型。
高级案例转向企业级 BI Dashboard。我们集成 Streamlit，实现多源联邦查询：本地数据库 + S3 Parquet。

1 import streamlit as st

con = duckdb.connect()

3 query = st.text_area("输入 SQL", value="""

SELECT * FROM postgres_query('host=localhost dbname=prod', 'SELECT * FROM sales

↪→ LIMIT 100')

5 UNION ALL

SELECT * FROM 's3://bucket/reports.parquet' WHERE date > '2024-01-01'

7 """)

if st.button("执行"):

9 st.dataframe(con.execute(query).fetchdf())

postgres_query扩展扫描远程 Postgres，UNION ALL融合云数据。优化中，用 CREATE MATERIALIZED

VIEW预计算视图，并设置 PRAGMA threads=8启用多核。

4 高级技巧与最佳实践
性能优化是 DuckDB的强项。通过 PRAGMA threads=16; PRAGMA memory_limit='8GB';配置线程数和内
存上限，确保资源高效利用。优先用 SQL原生函数而非 UDF，避免解释器开销；依赖分区剪枝和谓词下推，如
在WHERE中指定日期范围，自动跳过无关 Parquet行。调试时，EXPLAIN ANALYZE SELECT ... 输出查询



5 与其他工具对比 5

计划树，展示向量化 JOIN和哈希表大小。
DuckDB不适合高并发 OLTP，转而推荐 Postgres；对于云需求，可用MotherDuck服务。对于监控，查询
profile揭示瓶颈，如 I/O绑定的扫描需优化分区。

5 与其他工具对比
Pandas以灵活 API著称，但在大规模数据上内存饥饿，而 DuckDB在低内存大数据场景中胜出，提供 SQL简
洁性。Polars凭借 Rust实现速度飞快，DuckDB则以熟悉 SQL语法取胜，无需学习新 API。ClickHouse擅
长海量分布式数据，DuckDB更适合本地嵌入式原型。Spark的分布式能力强大，但单机快速迭代时 DuckDB
更敏捷简便。

6 结论与展望
DuckDB以其零配置、高性能和普适集成，彻底革新了数据处理范式，从本地探索到联邦查询，它让复杂任务化
为优雅 SQL。立即安装试用吧，GitHub示例仓库 github.com/example/duckdb-blog 含所有代码。展望
未来，DuckDB 1.0将强化稳定性，WASM支持浏览器分析，更多扩展如ML集成将至。DuckDB不是取代工
具，而是你数据旅程中的瑞士军刀。
参考资源：
官网：duckdb.org
文档：https://duckdb.org/docs/
论文：DuckDB: RadixJoin + Vectorwise
你的数据处理痛点是什么？欢迎评论区分享！

https://github.com/example/duckdb-blog

