
1

PostgreSQL优化技巧

杨岢瑞

Jan 20, 2026

1 为什么需要优化 PostgreSQL？
PostgreSQL作为一款开源的关系型数据库，以其高可靠性和扩展性著称，支持复杂查询、JSON处理和自定义
扩展，这使得它在企业级应用中广泛使用。然而，默认配置往往针对通用场景，并不适合高负载生产环境。在
高并发场景下，你可能会遇到查询响应时间从毫秒级飙升到秒级、连接池迅速耗尽、磁盘 I/O成为瓶颈，甚至内
存利用率低下导致系统崩溃。这些痛点会直接影响业务可用性。通过系统化的优化，性能提升通常可达 10倍至
100倍，同时硬件和运维成本能降低 30%以上。例如，一个典型的电商系统在优化前后，QPS从数百提升到
数万。
优化 PostgreSQL的核心原则是测量先行，使用 EXPLAIN ANALYZE等工具量化问题，然后小步迭代，每步验
证效果，并由持续监控驱动决策。这种方法避免了盲目调参，确保优化可持续。本文面向 DBA、开发者及运维
工程师，从基础诊断到高级技巧，逐步展开 PostgreSQL 14+版本的优化路径。我们将先介绍监控工具，然后
深入配置、索引、查询、表设计、高级扩展，最后通过真实案例收尾。

2 基础准备：监控与诊断工具
在优化前，必须建立完善的监控体系。首先考虑 pgBadger，这是一个强大的日志分析工具，能从 PostgreSQL
日志中生成详细的 HTML报告，包括查询耗时 TopN、锁等待分布和 I/O热点。通过 Homebrew安装它非常简
单：执行 brew install pgbadger，然后运行 pgbadger postgresql.log -o report.html即可生成报
告。这个命令会解析日志文件，统计每个查询的执行时间、缓冲区命中率和错误类型，帮助你快速定位瓶颈。
接下来启用 pg_stat_statements扩展，它内置于 PostgreSQL，能实时统计查询执行统计。激活它只需在
数据库中执行 CREATE EXTENSION IF NOT EXISTS pg_stat_statements;。这个 SQL语句会创建一个系
统视图 pg_stat_statements，其中包含字段如 query（规范化查询文本）、calls（调用次数）、total_time
（总耗时）和 mean_time（平均耗时）。查询这个视图如 SELECT query, calls, total_time, mean_time

FROM pg_stat_statements ORDER BY total_time DESC LIMIT 10;，就能看到最耗时的查询，按总耗
时降序排列，便于优先优化。
对于健康检查，check_postgres.pl是一个 Perl脚本，支持通过 cron定时运行，监控连接数、复制延
迟和真空进程状态。下载后配置如 check_postgres.pl --action=connection --host=localhost

--port=5432，输出 Nagios兼容格式，便于集成到监控系统。Web界面工具如 pgHero可通过 Docker
部署：docker run -p 3000:3000 -e DATABASE_URL=postgres://user:pass@host:5432/db

ankane/pghero，它提供直观的查询计划可视化和索引建议。



3 配置参数优化 2

性能诊断的标准步骤是：首先设置 log_min_duration_statement = 1000（单位毫秒），记录超过 1秒的慢
查询。然后对疑似问题查询运行 EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM orders WHERE date >

'2023-01-01';。这个命令不仅显示计划树，还实际执行查询，输出实际耗时、行数和缓冲区读写（如 shared
hit=1000 read=500），揭示是否因全表扫描或随机 I/O导致慢速。监控关键指标包括 CPU使用率、I/O吞吐、
锁等待（pg_locks视图）和连接数（pg_stat_activity）。
常见瓶颈前五位是索引缺失导致的全表扫描、postgresql.conf参数未调优、表 bloat占用过多空间、连接风
暴和硬件 I/O限制。通过这些工具，你能构建诊断清单：检查日志、分析计划、监控指标，从而为后续优化奠基。

3 配置参数优化
配置参数是 PostgreSQL性能的基石，尤其是内存相关设置。以 shared_buffers为例，它控制 PostgreSQL
使用的共享缓冲区大小，推荐设置为总内存的 25%。假设服务器有 16GB内存，调整为 ALTER SYSTEM SET

shared_buffers = '4GB';，然后执行 SELECT pg_reload_conf();重新加载配置而不重启。这个命令修
改 postgresql.auto.conf文件，pg_reload_conf()会通知服务器重新读取配置，避免 downtime。增大
shared_buffers能提升缓存命中率，减少磁盘读，但过大会挤压 OS页缓存。
work_mem控制单个查询的排序和哈希操作内存，公式为总内存除以max_connections再除以 4。例
如 16GB内存、100连接时设为 40MB：ALTER SYSTEM SET work_mem = '40MB';。这个参数过大会导
致 OOM killer杀死进程，过小则退化为磁盘排序。maintenance_work_mem用于 VACUUM和 CREATE
INDEX，建议设为 1GB：ALTER SYSTEM SET maintenance_work_mem = '1GB';，加速维护任务。
检查点配置影响写入性能，checkpoint_timeout默认 5分钟，可延长至 10分钟：ALTER SYSTEM SET

checkpoint_timeout = '10min';，配合max_wal_size = ’4GB’和 wal_buffers = ’64MB’，减少频繁
fsync调用。代码 ALTER SYSTEM SET max_wal_size = '4GB'; ALTER SYSTEM SET wal_buffers =

'64MB'; SELECT pg_reload_conf();会平滑WAL生成，平衡崩溃恢复时间与 I/O峰值。
连接管理中，max_connections默认 100往往不足高并发，设为 200但需搭配 pgbouncer：
ALTER SYSTEM SET max_connections = '200';，effective_cache_size设为总内存 75%
如 ’12GB’，指导规划器假设更多缓存可用。Autovacuum调优预防 bloat：ALTER SYSTEM

SET autovacuum_vacuum_scale_factor = '0.05';（默认 0.2，触发阈值降至 5%变更），
autovacuum_analyze_scale_factor = '0.02';，确保频繁更新表及时清理死元组。
使用 pgtune.leopard.in.ua等工具生成配置，或 pg_configurator脚本自动化调优。基准测试显示，优化
前 TPS约 5000，优化后达 15000，提升 3倍，证明参数调整的直接收益。

4 索引优化技巧
索引是查询优化的核心，选择合适类型至关重要。B-tree索引适用于等值和范围查询，创建非常直观：CREATE

INDEX CONCURRENTLY idx_orders_date ON orders (date);。CONCURRENTLY选项允许在不阻塞读
写的背景下建索引，避免生产中断。这个索引会为 date列维护平衡树，支持 =、>、<等操作，极大减少扫描
行数。
对于全文搜索或数组，GIN索引高效：CREATE INDEX idx_documents_tsv ON documents USING

GIN (to_tsvector('english', content));。to_tsvector将文本转为向量，GIN存储倒排列表，
支持@@运算符如 SELECT * FROM documents WHERE to_tsvector('english', content) @@



5 查询优化策略 3

to_tsquery('english', 'postgres');，查询速度从秒级降至毫秒。
BRIN索引适合大表有序数据，如时间序列：CREATE INDEX idx_sales_id_brin ON sales USING BRIN

(id);。它仅存储块级摘要，占用空间小（1/1000 B-tree），适用于 append-only表，加速范围扫描。
部分索引针对过滤条件：CREATE INDEX idx_active_users ON users (email) WHERE active =

true;只为 active用户建索引，节省空间并提升选择性。
复合索引按选择性降序排列列：CREATE INDEX idx_order_customer_date ON orders (customer_id,

date DESC);，最 selective的 customer_id放首位，支持WHERE customer_id=123 AND date >
’2023-01-01’ ORDER BY date DESC的覆盖查询，避免回表。
避免失效场景如函数包裹：CREATE INDEX idx_lower_email ON users (lower(email));，然后查询
WHERE lower(email) = 'test@example.com';。OR条件可用联合索引或 UNION重写。
维护通过 REINDEX INDEX CONCURRENTLY idx_orders_date;并发重建，pgstattuple扩展检查膨
胀：CREATE EXTENSION pgstattuple; SELECT * FROM pgstattuple('pg_class','orders');，
tuple_percent字段显示有效数据占比。
EXPLAIN前后对比显示，优化前 Seq Scan耗时 5s，优化后 Index Scan 0.1s；索引大小从 100MB降至
50MB通过部分索引。

5 查询优化策略
SQL编写直接决定性能。避免无索引的 ORDER BY全表排序，使用 LIMIT：SELECT * FROM orders ORDER

BY date DESC LIMIT 10;结合索引只需扫描前 10页。
EXISTS优于 IN：原 SELECT * FROM users WHERE id IN (SELECT user_id FROM orders);可能
全扫描子查询，优化为 SELECT * FROM users u WHERE EXISTS (SELECT 1 FROM orders o WHERE

o.user_id = u.id);，相关子查询逐行检查，早停高效。
窗口函数取代自连接：SELECT user_id, date, SUM(amount) OVER (PARTITION BY user_id ORDER

BY date) FROM orders;计算运行总和，避免多表 JOIN生成笛卡尔积。
JOIN优化依赖哈希 JOIN：EXPLAIN SELECT * FROM orders o JOIN customers c ON o.cust_id =

c.id;若小表哈希大表，规划器自动选择；手动提示 SET join_collapse_limit=1;固定顺序。
PostgreSQL 12+支持MATERIALIZED CTE：WITH sales_summary AS MATERIALIZED (SELECT date,

SUM(amount) FROM sales GROUP BY date) SELECT * FROM sales_summary JOIN other ON ...;，
物化子查询一次计算复用。
并行查询需 SET max_parallel_workers_per_gather = 4;，min_parallel_table_scan_size =

'8MB';，大表扫描分发到 worker进程。
N+1问题用 LATERAL：SELECT u.name, o.amount FROM users u CROSS JOIN LATERAL (SELECT

amount FROM orders WHERE user_id = u.id ORDER BY date DESC LIMIT 1) o;单查询获取每个用
户最新订单。
慢查询重写示例：原全连接 10s，优化为窗口 +EXISTS 0.2s。



6 表设计与存储优化 4

6 表设计与存储优化
声明式分区从 PostgreSQL 10+简化大表管理：CREATE TABLE sales (id SERIAL, date DATE, amount

NUMERIC) PARTITION BY RANGE (date); CREATE TABLE sales_2023 PARTITION OF sales FOR

VALUES FROM ('2023-01-01') TO ('2024-01-01');。查询自动裁剪无关分区，SELECT * FROM sales

WHERE date >= '2023-06-01';只扫 2023分区，时间从 20s降至 1s。
数据类型选 BIGINT优于 UUID（存储紧凑，排序快），VARCHAR(n)限长优于 TEXT。膨胀用 pg_repack：
pg_repack -t orders database，在线压缩无锁。
TOAST调优 ALTER TABLE docs ALTER COLUMN content SET (toast_tuple_target = 8160);，控制
大对象压缩阈值。
分区前后，查询时间降 95%。

7 高级优化：扩展与硬件
pg_trgm加速模糊搜索：CREATE EXTENSION pg_trgm; CREATE INDEX idx_name_trgm ON users

USING GIN (name gin_trgm_ops);，支持 %like%高效。
hypopg虚拟测试：CREATE EXTENSION hypopg; SELECT * FROM hypopg_create_index('CREATE

INDEX ON orders (date);');，预估无实际开销。
TimescaleDB处理时间序列：压缩 90%空间。
硬件调优启用 hugepages echo 1024 > /proc/sys/vm/nr_hugepages，OS调度 echo noop >

/sys/block/sda/queue/scheduler。
读写分离用 streaming replication，主库 wal_level = replica，备库查询路由。

8 真实案例分析
电商订单表，初始 QPS 100，添加复合索引 +范围分区后达 5000：分区 SQL如上，配置 diff显示
shared_buffers翻倍。
日志系统 bloat占 80GB，调 autovacuum+pg_repack回收 70%空间。
高并发 API用 pgbouncer池化 +并行查询，吞吐翻 4倍。

9 最佳实践与注意事项
用 pg_cron SELECT cron.schedule('0 2 * * *', 'VACUUM ANALYZE;');定时维护，Prometheus+Grafana
监控。
测试环境验证，回滚用 pg_dump。版本 15+ MERGE提升 UPSERT性能。
陷阱：过度索引增写开销，参数过度调优反致不稳。
优化路径：诊断→配置→索引→查询→维护。立即运行 EXPLAIN，分享你的故事。
资源：postgresql.org/docs/current/performance-tips.html，《PostgreSQL High Performance》，
pgtune、pgbadger GitHub，PostgreSQL Slack。


