
1

CSS光学错觉技巧

王思成

Jan 22, 2026

纯 CSS就能创造魔术般的视觉效果，你信吗？想象一下，一个旋转的立方体在屏幕上无限循环，仿佛打破了三
维空间的界限，或者一个不可能的楼梯，让你的眼睛不断追逐却永远无法抵达终点。这些不是 JavaScript的把
戏，而是通过巧妙的 CSS属性组合实现的视觉欺骗。本文将带你深入探索 CSS光学错觉的世界，从基础原理
到核心技巧，再到进阶应用，你将学会如何用渐变、动画、伪元素和变换等纯 CSS手段，制造出令人惊叹的互
动效果。这些技巧不仅能提升网页设计的趣味性，还能显著提高用户留存，尤其适合个人博客、产品 Landing
Page或艺术展示页面。文章结构清晰：先回顾光学错觉基础，然后剖析四大核心技巧，展示真实案例，最后提
供完整 Demo和挑战。无论你是 CSS中级开发者还是前端设计师，这篇指南都能让你收获实用灵感。

1 光学错觉基础知识
光学错觉是指眼睛和大脑在感知视觉信息时产生的误判现象，这种误判源于几何形状的扭曲、颜色的对比或运
动的模拟。在 CSS中，我们可以通过特定属性来模拟这些效果，比如几何错觉利用线条和形状的扭曲来欺骗感
知，这可以通过 border、clip-path和 transform属性实现，例如用 clip-path裁剪元素边缘制造不可能
的多边形。颜色错觉则依赖对比和渐变来迷惑眼睛，linear-gradient和 background-blend-mode是关键
工具，它们能创建出看起来亮度不同的区域，尽管实际颜色值相同。运动错觉通过静态元素模拟动态感，使用
@keyframes动画和 filter属性，如模糊或对比调整，来让画面产生流动幻觉。
掌握这些错觉需要回顾几项 CSS核心属性。perspective属性设置观察者的视距，营造 3D深度感；
transform-style: preserve-3d确保子元素保持三维结构，不扁平化；mix-blend-mode控制元素间的颜
色混合，制造对比欺骗；filter: drop-shadow则添加逼真的阴影，提升立体感。这些属性组合起来，能无需
JavaScript就实现复杂视觉魔术。浏览器兼容性方面，主要在 Chrome、Firefox和 Safari上完美运行，IE
用户可降级为静态渐变版本，避免动画失效。开发时，推荐使用 CodePen快速原型测试，以及 CSS-Tricks网
站获取灵感资源，这些工具能让你即时预览效果并分享。

2 核心 CSS 光学错觉技巧

2.1 无限旋转与深度错觉

无限旋转与深度错觉的核心在于 perspective和 rotateY动画的结合，它模拟 3D无限循环，让平面元素看起
来像在 Z轴上永动。考虑一个旋转立方体示例：我们先创建一个容器，设置 perspective: 1000px来定义视
距，然后用 transform-style: preserve-3d让子面保持立体。立方体由六个伪元素或 div组成，每面应用不
同渐变背景，如从蓝色到紫色的 linear-gradient。



2 核心 CSS光学错觉技巧 2

以下是核心代码：

1 .cube-container {

perspective: 1000px;

3 width: 200px; height: 200px;

}

5 .cube {

position: relative; width: 200px; height: 200px;

7 transform-style: preserve-3d;

animation: rotate 10s infinite linear;

9 }

@keyframes rotate {

11 0% { transform: rotateY(0deg); }

100% { transform: rotateY(360deg); }

13 }

.cube-face {

15 position: absolute; width: 200px; height: 200px;

}

17 .front { transform: translateZ(100px); background: linear-gradient(45deg, #ff6b6b, #

↪→ feca57); }

.back { transform: rotateY(180deg) translateZ(100px); background: linear-gradient(45

↪→ deg, #48dbfb, #0abde3); }

19 /* 类似为 right, left, top, bottom 定义 */

这段代码中，perspective在父容器定义，营造深度；cube的动画使用 rotateY(360deg)实现无限旋转，
每帧平滑过渡。每个 .cube-face通过 translateZ定位到正确深度，渐变背景增强视觉冲击。优化时添加 will-
change: transform，让浏览器预分配 GPU资源，避免卡顿。变体包括浮动球体（用 border-radius: 50%
和 rotateX），或漩涡隧道（多层嵌套 cube）。试试 hover暂停动画：.cube:hover { animation-play-state:
paused; }，这会让效果更互动。

2.2 几何扭曲与不可能图形

几何扭曲技巧利用 clip-path和伪元素叠加，制造如 Penrose三角般的不可能图形，这些形状在现实中无法存
在，却能通过 CSS层叠欺骗大脑。原理是多层元素精确对齐，伪元素填充「缺失」部分，模拟连续扭曲。以不
可能楼梯为例，灵感来自M.C. Escher，我们用多个梯级 div，结合 clip-path: polygon()裁剪棱角。
核心代码如下：

1 .impossible-stairs {

position: relative; width: 300px; height: 200px;

3 background: linear-gradient(90deg, #333, #666);

}

5 .stair {



2 核心 CSS光学错觉技巧 3

position: absolute; width: 100px; height: 50px;

7 background: #fff; box-shadow: 0 5px 10px rgba(0,0,0,0.3);

}

9 .stair:nth-child(1) { bottom: 0; left: 0; clip-path: polygon(0 0, 100% 0, 100% 100%,

↪→ 0 50%); }

.stair:nth-child(2) { bottom: 50px; left: 100px; clip-path: polygon(0 50%, 100% 50%,

↪→ 100% 100%, 0 100%); transform: rotate(90deg); }

11 /* 继续为后续楼梯定义，循环扭曲 */

.stairs::after {

13 content: ''; position: absolute; top: 0; left: 200px;

width: 100px; height: 200px; background: #fff;

15 clip-path: polygon(0 0, 100% 0, 50% 100%, 0 100%);

}

这里，clip-path: polygon()定义不规则多边形，精确裁剪每个楼梯段，使其看起来连接成无限上升路径。
box-shadow添加深度，伪元素 ::after填充转角「空白」，制造连续幻觉。hover变体：.stair:hover {
animation: deform 2s infinite; @keyframes deform { 0%, 100% { transform: skew(0deg); } 50% {
transform: skew(15deg); } } }，让楼梯动态弯曲。类似实现弯曲棋盘，用 perspective和多个 transform:
skew()层叠网格线。

2.3 颜色与对比欺骗

颜色错觉依赖 background-blend-mode和多层渐变，制造如 Adelson阴影棋盘那样的效果，其中「白色」
方块实际是灰色，却因阴影对比看起来更亮。原理是眼睛对周边亮度的相对感知，我们用叠加层模拟光影。
示例代码为 Adelson棋盘：

.checkerboard {

2 position: relative; width: 400px; height: 400px;

background-image:

4 linear-gradient(45deg, #000 49%, transparent 50%),

linear-gradient(90deg, #000 49%, transparent 50%);

6 background-size: 80px 80px;

}

8 .shadow {

position: absolute; top: 160px; left: 160px;

10 width: 80px; height: 80px; background: #777;

}

12 .shadow::before {

content: ''; position: absolute; top: -20px; left: -20px;

14 width: 120px; height: 120px;

background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, transparent 70%);



3 进阶应用与真实案例 4

16 mix-blend-mode: multiply;

}

18 .white-square {

position: absolute; top: 160px; left: 240px;

20 width: 80px; height: 80px; background: #999; /* 实际比 shadow 暗 */

}

background-image创建棋盘网格，mix-blend-mode: multiply在 ::before上混合高斯光晕，模拟阴影投
射。#999的「白方」因周边对比显得亮白，尽管数值更暗。脉冲辉光变体：添加@keyframes pulse { 0% {
filter: hue-rotate(0deg) brightness(1); } 100% { filter: hue-rotate(360deg) brightness(1.2); } }，
让颜色循环欺骗持续。试试鼠标移动调整 shadow位置，实现互动光影。

2.4 运动幻觉与跟随效应

运动幻觉用@keyframes微动画和 mix-blend-mode: difference制造静态中的动态感，如旋转蛇图案，黑
白曲线因微移产生流动错觉。跟随效应则让元素「追踪」鼠标，无需 JS。
代码示例为旋转蛇：

1 .rotating-snake {

display: grid; grid-template: repeat(8, 1fr) / repeat(8, 1fr);

3 width: 300px; height: 300px; background: radial-gradient(circle, #000 20%, #fff 21%,

↪→ #fff 40%, #000 41%, #000 60%, #fff 61%);

animation: snake 15s linear infinite;

5 mix-blend-mode: difference;

}

7 @keyframes snake {

0%, 100% { transform: rotate(0deg); }

9 50% { transform: rotate(180deg); }

}

grid布局精确定位圆环，radial-gradient绘制曲线；微小的 rotate动画触发大脑补全运动，difference模
式增强对比。跟随光点变体：用 pointer-events: none的伪元素，结合 transform: translate(calc(50vw
- 50%), calc(50vh - 50%))模拟追踪（实际需容器相对定位）。

3 进阶应用与真实案例
在实际项目中，性能优化至关重要。优先使用 transform和 opacity，这些属性触发 GPU加速，避免 reflow；
响应式设计通过媒体查询调整 perspective值，如@media (max-width: 768px) { perspective: 500px;
}。无障碍考虑使用@media (prefers-reduced-motion: reduce) { animation: none; }，禁用动画以尊重
用户偏好。
真实案例丰富多样。例如，在个人主页 Hero区，使用无限 Z轴隧道欢迎动画：一个 perspective容器内多层
渐变环，以 rotateX动画推进，CodePen上有完整实现，增强沉浸感。产品 Landing Page可采用浮动粒子



4 完整 Demo与挑战 5

错觉，数百小 div用@keyframes微漂移和 filter: blur，参考 Awwwards获奖站点如 Bruno Simon的作
品。艺术画廊则将 Escher静态画作动画化，自制 Demo用 clip-path层叠实现动态不可能三角。
常见坑点包括子像素渲染导致边缘锯齿，解决方案是 backface-visibility: hidden隐藏反面；动画卡顿时，
限制@keyframes关键帧至 5-10个，并用 cubic-bezier缓动函数平滑过渡。这些技巧让光学错觉从实验走
向生产。

4 完整 Demo 与挑战
以下是一个综合互动光学画廊的完整 HTML/CSS代码，一键复制到 CodePen测试。它整合旋转立方体、不可
能楼梯和颜色棋盘，hover触发变形。

<!DOCTYPE html>

2 <html>

<head>

4 <style>

/* 插入上述所有技巧的 CSS，添加 .gallery { display: flex; gap: 50px; } 布局 */

6 .demo-cube { /* 旋转立方体代码 */ }

.demo-stairs { /* 不可能楼梯代码 */ }

8 .demo-checker { /* 棋盘代码 */ }

.gallery > div:hover { filter: saturate(1.5) !important; animation-duration: 1s; }

10 </style>

</head>

12 <body>

<div class="gallery">

14 <div class="demo-cube"></div>

<div class="demo-stairs"></div>

16 <div class="demo-checker"></div>

</div>

18 </body>

</html>

这个 Demo用 flex布局展示三技，hover增强饱和度和加速动画。挑战读者：fork此 CodePen，实现
Müller-Lyer箭头错觉（内箭头线段看似长短不一，实际相等），用 border和 transform: scale模拟视角差，
分享链接到评论。
扩展资源包括书籍《Optical Illusions》深入原理，网站 IllusionOfTheYear.net年度最佳错觉，以及 CSS库
Anime.js（对比纯 CSS的轻量优势）。

5 结尾
通过无限旋转、几何扭曲、颜色欺骗和运动幻觉四大技巧，你已掌握用少量 CSS创造高互动视觉魔术的核心。
perspective、clip-path和 blend-mode等属性证明，纯 CSS足以骗过眼睛，提升设计魅力。立即行动：



5 结尾 6

在评论分享你的自制 Demo，订阅博客获取更多教程，关注 Twitter！未来，CSS Houdini和 Subgrid将进一
步解锁自定义属性和网格错觉，让魔术更强大。试试这些技巧，你的网页将不再平凡。


