Zig IBEFHIREMRRTRK

wmFR
Jan 24,2026

Zig B— MK ARRRFIZES, CRASHSIHR. TUMREIEEE, SFAN CiESHELL, Zig BIFmF
BH1T (comptime) %R T BB ARITHRIZAES]), EIBTES TIZITRNFIHE, MR AZRT, WikE%
5%, RARRANRERAALR, NEGRRAKEXEE, ANECERETXMEFGPE. NFEEANAMBE
PATHE, Zig FAlEEXEMK, AAENRERRTLERZFNEH, LBERBATHIRSNIREIWHLE],
FREFLEHITHIS TN FHRMUE,

XX ETERNER Zig PAFERRNZOES, BE—RITARURIGNTERETG, HadEENLlE
TEFMR. [, HITREELE Zig 5 C M Rust ZRERFEIEGAENESR, BENIREER Zig REMNS.
RIGEECAFEM Zig IBEMIR, HXWEEE. MTTH CPU ZEBHL TR, RITBNEMZLRNEEHK
W o

1 2. Zig PR EFHRBEM

£ Zig #, BEXRBIEXRENAGERTEHEN, il i2 R EA 4 FT, MFERBRE 4 FTH, XEKEH
iRt IUE 4 BB FSKEN f64 5 8 F T, X3FA 8 F1, Zig RIHTAERHKREMXLEMY,
Eb30 @asize0f(i32) iR[E] 4, @align0f(i32) iR[E] 4, M aoffset0f BFEMAERIFEFERNFEEE, X
EIEIE comptime #1117, WRTEFHERERFHARTA.

SEMEZRNERRBMUIIZL, Zig NRIARUEFEEANTT: 8MNFERAMFTERRE 7 HELEWEFRHM
B, MRF—FRERUETHEHAIFENNTT, FERIEBENERTFT (padding). FlW, ZEUT
RIMWRILEID A

const std = @aimport("std");

const BadStruct = struct {
a: bool, // 1 F¥1, #FF 1
b: i32, // 4 F5, XM 4
c: u8, // 1 FH, WF 1
b

XMEMER B2 ANET LOEE asize0f (BadStruct) Eiff, £RE 8 F1, MAREIL LW 6 T, RATE
F bool RE1FH, HEEHA 3 FT padding LU i32 M 4 FTHIARFFH,; 132 £&EK/G, us AJLUER, H
AT ENEMENNT (URAKFEXMTT, B 4 F1), AIRESMER. XER T padding dEIETE SHIR
BNE, BEEITENRE, BITIUEE aoffset0f(BadStruct, o) 2 O, aoffsetOf(BadStruct, b) 2

2 3. BENAERERESIZH 2

4, @aoffset0f(BadStruct, c) @8, BA/N12 FH (ELMFEURTFES, BHE x86_64 7 12), XFHH
R 7 CPU &XAR, BHEEFELE XML,

B FTHRARRE R CPU 2249181t : MARIER L 64 FHEFTARMMEEIE, IEXTFIHRIsEAA
ZRNEFEES SIVMD 595K, [, SIMD 159 AVX EREAEHIENFTE 32 FHHES. Zig WEAX
FEREBS C—3, {8 Zig B comptime AFERIZNIIEFBEREAR, BRiEiTIFERE,

AR 1E Zig PR NELERER, XHERTRENTEFEBEMEEEEY. Zig B9 slice (0 []T) 1R
EEMNMEH (RIGHUFKE), TPRETHE, 5 C WHRARR, SETTREERL ABl FETIIMNTH, XHF
Zig slice HAlEE = HRESIBAIE, FIMNTERSKFBERNFRAN, ESMARREAMEREHT,

2 3. BERAEFmRIRESIZE

TEXMALRY, SMEREZENFTRENEEFRE. U—NEE bool. int M pointer BLEMERGI, KM
BY padding AT 52K/ 30% Ll E, §27E ECS (Entity-Component-System) RLGEHEBEHIEMESG
RAEZNE. F—IMRBREERGT: HEMEFERONN, BERFUAESSTMENETERY, LHESZ
CPU LA MEEII, LI, BFEEEREE, x86 AWIEXMTTIHENERIE, M ARM mRERMTT, ERE
SEEHEE,

12 WX LE o] B Ao K Zig RiF SR, EA S 2 zig build-exe main.zig -femit-bin=obj
--verbose-layout AINERIFANHERER, SESIFERNRE. padding K/NMIXTF. B178, FHi1AT

LI comptime %!

pub fn printLayout(comptime T: type) void {
std.debug.print("Size: {}, Align: {}\n", .{ @sizeOf(T), @alignOf(T) });
inline for (std.meta.fields(T)) |field, i| {
std.debug.print(" {}: offset={}, size={}\n", .{ field.name, @offsetOf(T, field.
< name), a@sizeOf(field.type) });

}

XANREFIB std.meta. fields ERLEMEAFER, £ comptime HEHITENHRF. M printLayout (BadStruct)

2187R padding &, FEBMREENMIAIE, MFHEEEMIR, MBI A Valgrind B9 Cachegrind AJLURIAEE
F1TR, |R’E miss XF; Linux B9 perf TENSZAYREEIHIRER,

AN EELRFEMNRXE, Zigh std. testing BRABXHF, UTE—MEREE, ARSI
RE:

test "layout benchmark™ {
const allocator = std.testing.allocator;
var arena = std.heap.ArenaAllocator.init(allocator);
defer arena.deinit();
const array = try arena.allocator().alloc(BadStruct, 1_000_0060);

defer allocator.free(array);

var start: i64 = undefined;

3 4 REHBRAEIS 3

const result = blk: {

start = @intCast(std.time.nanoTimestamp());

var sum: usize = 0;

for (array) |item| {

sum += @intCast(item.b); // A padding HIFER

}

break :blk sum;
b
const elapsed = @aintCast(std.time.nanoTimestamp() - start);
std.debug.print("Elapsed: {} ns\n", .{elapsed}); // BABEH: RILATIIE

1

XERBESEBEARHA, NEFEFREHNE, FE aintCast LIBBTEIE, blk RERRER. BIZRIE
17HFLY, FJLUME padding SAEMNERE miss. WEEZT BEILEMZS, ERFEZX 20-50%,

3 4 REFEHBRARTS

FRAFRREREMNNUERERN: FFEIZEFNTANET, B TRANFERBKE&EA (biggest fields
first)o X&/ME padding, EAKRMNFTFERE HIEH) FENFRIUE, EFHHYIFIAR BadStruct:

const GoodStruct = struct {

b: 132, // 4 FT&EK

a: bool, // 1 FHEIR

c: u8, // 1 FriEE

padding: u8 = 0, // EXEZFEE 8 FHMTT (FiE)
b

IE @size0f(GoodStruct) A8 FT, HAT 4FTH (HBXTF 12), aoffset0f(GoodStruct, b) & O,
faj @4, Tcl 5, RN padding, INMENEBALFIHTE MB kNE, BIRAZREEEMY, BAE
RAARFEESFME,

FFRIFEEER, Zig 12 apacked struct, EHBRFIE padding, RAITEFE, BAMTT:

const PackedStruct = packed struct {
a: bool,
b: i32,
c: u8,

bs

asizeOf (PackedStruct) 5 6 1, BEITH, BES: EXTFIAHEE ARM £FJHE 10x T8, NEERE
F/ IR packed B ATFAEHEFFREM,

BENXMTTA align(N) X%F, %0 align(16) const Vecd = struct { x: 32, y: 32, z: 32,
w: 32 };, #fR SIMD &%F. extern struct NI3&#| C ABI /&, BT FFl: FEIRFM™M, & padding
BE, MFHREAE,

3 4 REHBRAEIS 4

EERIFIEITH, Structure of Arrays (SoA) fiF Array of Structures (AoS). AoS 2 []Struct, &
M TEEEMETR, SEEHE—RBMENEEETHER; SoA BHFTHAMN { (132 x, [If32 y }, Bl
%L, BF SIMD, EEHFRSRAG:

ol

const ParticleAoS = struct { pos: [3]f32, vel: [3]f32, life: 32 };

const ParticleSoA = struct {

pos: [][3]f32,
vel: [][3]f32,
life: []f32,

bs

EEHBEFD, SoA F for (0..n) |il { pos[i][0] += vel[i][0] * dt; }, #IEES, SIMD 0
aVector(4, f32) AJ—RAE 4 MhiF, BEEERR SoA 127+ 2-4x HE, LHE GPU-like #tE4 A, Zig
B std.mem.Allocator MAfRXLEHAELE DAL, H—F Mk

Comptime Z Zig HIRFHl, seBmERRNTR. BE—NEHFREK:

20

22

24

fn SortedStruct(comptime fields: []Jconst std.builtin.Type.StructField) type {
var sorted_fields: [fields.len]std.builtin.Type.StructField = undefined;
/] comptime EHIF, & sizeOf XMTFHER
inline for (fields, 0..) |f, i| {
sorted_fields[i] = f;
b
var i: usize = 0;
while (i < fields.len) : (i += 1) {
var j: usize = 1i;
while (§ < fields.len) : (§ += 1) {
if (@sizeOf(sorted_fields[i].type) < asizeOf(sorted_fields[]j].type)) {
const tmp = sorted_fields[i];
sorted_fields[i] sorted_fields[i];

sorted_fields[j] = tmp;
}
}
}
return aType(.{ .Struct = .{
.layout = .auto,
.flelds = &sorted_fields,
.decls = &.{},
.is_tuple = false,
P

fEFEY const Optimized = SortedStruct(&std.meta.fields(SomeStruct).++);, BERFNEHF

2

4 5. ERREGISH 5

B, HRZ padding. ARG EBEUMK, ERFEHBEMB DSL,

BRIEIZEIE union fifb: union(enum) { A: i32, B: f64 } AANTE + RAFEA/), BHROENER
4h==iEl, Zig B optional 2T FMF union(enum) { null: void, val: T }, K/NA asize0f(T) + 1
(#8%t3%) . SIMD A aVector(8, 32), % align(32)., TA/NEHE! (ZST) #W struct {} K/NO, BTz
AR LA & =iEl.

4 5. KERZEHISHF

ERSERAGE RS (ECS) *, BAERAEAM/NAGENESHEETERN. BRIRAHAN struct { id:
u32, active: bool, health: 32 }, AoS B Ti&EA health B&EEFT, LLEA SoA + packed:

const ComponentSoA = struct {
ids: [Ju32,
active: []bool, // B packed bitset
health: []f32,

fn updateHealth(components: *ComponentSoA, dt: f32) void {
inline for (0..components.health.len) |i| {
if (components.active[i]) {

components.health([i] -= dt;

}

EHESRET, M A0S E| SoA, EH M AMHM 15ms BEEl 5ms, IEFH 3x. packed bitset AI#—% 3§ active
[E45% 1/8 =ial,
WEHIEBRRITEBF RN, FH extern struct N

const Packet = extern struct {

magic: u32, // little-endian by default

len: ul®B,
id: ul6,
data: [256]u8,

bs

NS abitCast (Packet, bytes[0..asize0f(Packet)]) BHiZfEth, TN, BIF A abyteSwap
28 endianness.
WA BESE Flash 3455, 04 FHiAFA, comptime 18!

const LogEntry = packed struct(u32) { // 2 4 F%
timestamp: u20,

level: u3,

4

5 6. MEETESRETE 6

msg_id: u9,

bs

abitCast(u32, entry) 5 A Flash, HFREERMTT,

5 6. MERE A5 &IELER

EURUEXRTINEERE. EEGPERMIFAER, EH perf i2R perf stat -e cache-misses
./bench, fitbfg miss XaJg 40%, RIFEHEER: MUFIRNEFESHA 12MB, EE 100ns/ifE); 5 8MB,
50ns,

RIEREREEEXEMAEIIA asize0f 0E; MAFEHF, HX packed, REBEXITF. BNEIE

5 Ctb#, Zig faB5eeF6h + comptime, C § #pragma pack; Rust A #[repr(C)] & packed, {81
comptime Bfift. Zig B asize0f FREME C B9 sizeof, LHEZEA,

6 7. BEREMASEEED

B NEIREZBE packed BUMERER N : JEXIST load/store 1£ x86 1€ 2-3x, £ ARM iR, BEITGELERE
zig build -target aarch64 Midt. union A TRIEE UB, Eir&KREF.

JEIREHER debug R HM padding BT ASan, zig fmt AWK, &P 2zig build test
RffH asserto

7 8. #ie

Zig WREFEHRBMLEEEN, BMA, B%FTF comptime BHiEH. MFRAIFEEI SoA MBEEIER, ST
I5¥g R A 2 IR

R Zig 1.0, HIE3E SIMD MiERAEKH—FE LMK, HXEARGRAIMKIA, W Godbolt £ Zig
% (https://godbolt.org/z/xxx) ERENHERF.

BMRETEDE RN AXLERTS, BITEAHSZEER, #E) Zig LS.

8 9. iR

SEEME N GitHub: https://github.com/example/zig-layout-opts

B2£ 7ig X4 https://ziglang.org/documentation/master/#Memory-Layout, {Game Programming
Patterns) BIBSMI&ITET, Zig master B35 SIMD,

ARi&: Padding BEANFTHEITT; Cache Line 64 FHEHE(L; Natural Alignment FEEA/NEIFTF

