24 C SR AIA 28 F SR B 3R
R
Jan 28, 2026

EBERENHRARRSF, VREIRUBEBENERAFEK, XEGSETREZR, AEMITEEDRE
WA, fEFHIH128% SIMESRMN TensorFlow Lite 8f ONNX Runtime BSR58A, #MK#FE A C++ BT EMN
BZFHEH, XTERVIFESHAREE 4P LUEE, Btb2 T, 4i C TMIHIES I ZAFEENE: ERER.
TN BEERDMER, HEEZTITFIBEHNERSYE, SUSMEHEE, XMIMARFIEEHRA
IR, MRIEHI2REIARS 8%, WMEETLEEM. AEMNERBFENTF, ZSHE— TN C HIEIE
R, REMETRE, FHRTRESHERRE.

AXHBEMRER CIBEEALE. RARITRRIMURSERANEFE. NRMABIETHEENEREERE, B
B FSIERADLIRIIT S, XEXERATRENSHENLEIERE. XEEWEN, TOmHEE
b, REEXBIREMSTIA, BELMZOEMERMEER, BERNEERL, REEITERGBETR
EWER, BIFE, MEEENEATRE 10KB 4l C 3, SSIIBERSBIESRMEEMEE,

1 EhhEF R

HES BRI EA R KERNESIBIERY. MEERSEMKESN, MEIEEBRET
EREYE, MEERENYEAR C = AB, HF C); = 3, AxBije & CH, RITA—4% float SBEMS
YRR, BRERNSEIAR, BERENET RS BRI, FINXTER A 5RE AT = A,
BERMEI NS, BEDH RelU BEENH f(z) = max(0,2), HCRMEEER. FERORLE
&, FBEFMEHENIE:

1|void relu(float* input, float* output, int size) {
for (int i = 0; i < size; ++i) {

s output[i] = input[i] > 0.0f ? input[i] : 0.0f;

5| }

RERABZETRIEBRBAASE, IRATEUERFRE, SWEZF. input M output BELK float
4, size RINTTREH. ATERDITNERY, fI#E—PREN, EEMREE%EEM. Sigmoid Kk
f(z) = = BEEWER, HCIMMTF:

1|void sigmoid(float* input, float* output, int size) {
for (int i = 0; i < size; ++i) {
3 float x = input[i];

output[i] = 1.0f / (1.0Ff + expf(-x));

N

2 BURGEMSZOLIA 2

}

XEEA <math.h> B8 expf (RIFEFEREE), FxHRITE sigmoid B, FRFRIRERE/) x BEITAIEE
R, BN FHIEEEFH, Softmax BFZENE, 2RXF f(x;) = %, HRREARAERLEEGN:

void softmax(float* input, float* output, int classes) {
float max_val = input[0];
for (int i = 1; i < classes; ++i) {
if (input[i] > max_val) max_val = input(i];
1
float sum = 0.0f;
for (int i = 0; i < classes; ++i) {
output[i] = expf(input[i] - max_val);
sum += output[i];
1
for (int i = 0; i < classes; ++i) {

output[i] /= sum;

}

LEERER SRR R AME max_val HITHERE WL, ARITEEHNT—LEM, WEFREREE, ERTIEXN
e e) =

FIAEEEREENZ L. £2%FERE (Dense Layer) 8RNy = o(Wz +b), HP W BNEER, b
BRE, c BBUERE. £E (Conv2D) MFREMZERMNFEE LNBER: B Oncopo, =
Zkh,kwacin Ko o100 knwcin * Incinsinins S in = op - stride + ky, — pad %, H1& (stride) FEF
(padding) EFHIBHR . FIMTERBEX ZHEWREE, BRERET. XHEFLZEESHR (40 oxcmLl).
Rz, BE#, AESNEEHRE ID (W0 1=Dense, 2=Conv). LEMBHIR, XFEXEE, B fread BT
1=

2 BUREWS%OIA
BOSIRAR B NEINKE, BT SR EXNT:

#define MAX_DIMS 4
struct Tensor {
int dims [MAX_DIMS]; // FZ4K, @0 {N, C, H, w}
int ndim; // HEH
float* data; // ELEIE, NHIC /3
int size; // BITEI = FF(dims)

2 BURGEMSZOLIA

3

Tensor FH dims ZEZIR, data FEMENESERNTE, size MBS EEHEEERE, NHWC 1 Htr-5-%-

WE) REFERE, &6 CPU. MHRKREITE size RN

NEEEEMREXT, T nalloc ZHEAL, RITEMBECHHIECS:

[

~

typedef struct {
float* pool;
size_t total_size;
size_t used;

} MemPool;

MemPool* pool_init(size_t size) {
MemPool* p = malloc(sizeof(MemPool));
p->pool = malloc(size * sizeof(float));
p->total_size = size;
p->used = 0;

return p;

float* pool_alloc(MemPool* p, size_t n) {
if (p->used + n > p->total_size) return NULL;
float* ptr = p->pool + p->used;
p->used += n;
return ptr;

}

MemPool T ECAIRATE, pool_alloc REfRIZIEH, BRZRAFZIFR. KEMAN, STRAMDEFREN

g, SUBEN,

sEFEFE (GEMM) ZHRF, HER=MEIF O(N?) K18, BINADRMK, HERK/N 32 F 64:

void gemm(float* A, float* B, float* C, int M, int N, int K) {

for (int i = 0; i < M; i += 32) {

for (int j = 0; § < N; j += 32) {

for (int k = 0; k < K; k += 32) {
/1 . 8x8 = 4xa AR

for (int ii = i; ii < min(i+32, M); ++ii) {

for (int ji = 3; i < min(3+32, N); ++jj) {
float sum = 0.0f;
for (int kk = k; kk < min(k+32, K); ++kk) {
sum += A[ii*K + kk] * B[Kk*N + jj];
!

Clii*N + jj] += sum;

3 HEAIZIMSII 4

XERRIREEDHEIR (block size=32), REMZRMAR. RT3 A[iixk + kk] RigFIL%E (Fortran K
1), BERMBITMHRIFEN AliixK + kk]. SEFFHE memset C AHZ, MLMLARE 5-10 &,

EMEM im2col BAN GEMM: BRNFIRAREREMR, S5ERZAER. BEERUREDQEGEH (i
BENSRRE. SaRBmENLA SIVMD, 140 SSE:

#include <xmmintrin.h>
void relu_sse(float* data, int size) {
__ml28 zero = _mm_setzero_ps();
for (int i = 0; i < size; i += 4) {
__ml28 v = _mm_loadu_ps(data + i);
v = _mm_max_ps(v, zero);

_mm_storeu_ps(data + i, v);

_mm_loadu_ps M 4 1 float, _mm_max_ps 71T RelLU, _mm_storeu_ps BB, KkXFFAEMA unaligned
ks, EERIERTE x86 EIRE 3 1,

3 REIZEMLI

LEEMEEREERR. EX Denselayer:

struct DenselLayer {
int input_size;
int output_size;
float* weights; // output_size * input_size
float* biases; // output_size

bs

ARG R RINERREIR:

void mlp_forward(struct Model#* model, struct Tensor* input, struct Tensor* output) {
struct Tensor* current = input;
for (int 1 = 0; 1 < model->num_layers; ++1) {
struct DenselLayer* layer = &model->layers(1l].dense;

float* out_data = pool_alloc(model->pool, layer->output_size);

3 HEAIZIMSII 5

21

struct Tensor temp = { .dims = {1, layer->output_size}, .ndim=2, .data=out_data

—s , .size=layer->output_size };

// GEMM: out = weights * current + biases

gemm(layer->weights, current->data, out_data, 1, layer->output_size, layer->
< input_size);

for (int i = 0; i < layer->output_size; ++i) {
out_data[i] += layer->biases(i];

}

relu(out_data, out_data, layer->output_size); // inplace

current = &Gtemp;

}

copy_tensor(current, output);

e R EF MM FF I8, & B GEMM (X B M=1 " E8EA), MREE/S ReLUs pool_alloc EAMNTF,
copy_tensor EHFIRZLHHEIBFE A, R MNIST 533528 784-128-10 £, EMZEIX 98%.
LBIMEMEY B Conv2D Mk, Convlayer EX M, B4F kernel_size. stride. padding. 3£
MEESR

void conv2d(struct Tensor* input, struct ConvLayer* layer, struct Tensor* output) {
int in_h = input->dims(1], in_w = input->dims([2], in_c = input->dims|[3];
int out_h = output->dims[1], out_w = output->dims[2], out_c = output->dims[3];

int kh = layer->kernel_h, kw = layer-=>kernel_w;

for (int oc = 0; oc < out_c; ++oc) {

for (int oh = 0; oh < out_h; ++oh) {

for (int ow = 0; ow < out_w; ++ow) {

0.0f;

float sum
for (int ic = 0; ic < in_c; ++ic) {
for (int khh = 0; khh < kh; ++khh) {
for (int kww = 0; kww < kw; ++kww) {
int ih = oh * layer-=>stride + khh - layer-=pad;
int iw = ow * layer-=>stride + kww - layer-=pad;
if (ih >= 0 & ih < in_h && iw >= 0 && iw < in_w) {
sum += input->data{(ih*in_w + iw)*in_c + ic] *

layer->weights[(oc*in_c + ic)*kh¥kw + khh*kw + kww] ;

23

25

27

4 REMHESFIIL 6

output->data[(oh*out_w + ow)*out_c + oc] = sum + layer->biases[oc];
1
1
1

relu(output->data, output->data, output->size);

AERFITES ML GENMNA, BROERLEBER. NEHF/HF out_c xin_c x kh x kwe 3F
CIFAR-10 ;=ffl, =& CNN (Conv32-ConvB4-MaxPool) + MLP 3k, #IBFER{ET Sms/Blf.

S EY BatchNorm 7E#IEREERN vy = VJT + 6, FtEYEAEENEER, Dropout #IENZEL,
FREZEZEESEMEM: output = conv(input) + input (ERFTILED),

4 EEMFSFTIL

BEMBUTHEIHFRE: Kk 32 FHEEM CULF. RAE. B 2K RESME: uint8_t type.
uint32_t dims[8). uintB4_t weights_offset. uint32_t weights_size &, MNER:

21

struct Model* model_load(const char* filepath, MemPool* pool) {
FILEx f = fopen(filepath, "rb");
char magic[4]; fread(magic, 1, 4, f);
if (memcmp(magic, "CMLF", 4) != 0) return NULL;

uint32_t version, num_layers, total_size;
fread(&version, 4, 1, f); fread(&num_layers, 4, 1, f); fread(&total_size, 4, 1, f

—)

struct Model* model = malloc(sizeof(struct Model));
model->num_layers = num_layers;
model->layers = pool_alloc(pool, num_layers * sizeof(Layer));

model-=>pool = pool;

for (int i = 0; i < num_layers; ++i) {

uint8_t type; fread(&type, 1, 1, f);

if (type == 1) { // Dense
struct DenselLayer* 1 = &model->layers[i].dense;
fread(&l->input_size, 4, 1,);
fread(&l->output_size, 4, 1, f);
uint64_t w_off, b_off; fread(&w_off, 8, 1, f); fread(&b_off, 8, 1,);
fseek(f, w_off, SEEK_SET); 1->weights = pool_alloc(pool, 1l->input_size * 1->

< output_size);

fread(1->weights, 4, 1->input_size * 1->output_size, f);

23

25

27

29

5 MREMAERIT 7

fseek(f, b_off, SEEK_SET); 1l->biases = pool_alloc(pool, 1l->output_size);
fread(1->biases, 4, l->output_size, f);
}
/] ELIE conv F
1
fclose(f);

return model;

}

LEEREEOIERESL, RECKER, BEIRIE type BKEMBINE, RIEERFIFELFME. MHEEMA mmap B X
, SEIZHEDNL: void* map = mmap(NULL, filesize, PROT_READ, MAP_SHARED, fd, 0);, WEHI%
5| FAMSTNTZ.

B HE INTS: MEBRFEBINE w, = round(wy/scale), HIER y = dequant(quant emm(zy, wqy))o M
PyTorch S48 Python fii4s:

import torch

model = torch.load(' model.pth')

with open('model.bin', 'wb') as f:
f.write(b"CMLF')
5 NKEEHIE
for name, param in model.named_parameters():

f.write(param.numpy().tobytes())

MIZABH S, FyIRsE, EF C .

5 MEREMLIIRIS

mE{EEE, SSE/AVX B GEMM Wi%., ARM NEON FA&H4miF:

#ifdef __ARM_NEON

#include <arm_neon.h>

void gemm_neon(float* A, float* B, float* C, int M, int N, int K) {
float32x4_t a_vec, b_vec, prod, sum = vdupqg_n_f32(0.0f);
/] NEON 4x4 i
/Il ...

1

#endif

REFEMRLRAE NHWC %/, HR GEMM 89 A 17iE4:. BIIRETGF. REER: THhMaiERAFiEKE
KN, LI in-place ReLU (GEBE—%&4).

HITHREREIEM, T OpenMP &K IROMAT AL BER LR, EENAETR, & Intel i7 £, &R5|%
HE{&HEIE 2ms, W7E 500KB, T TensorFlow Lite & 5MB. 8ms, HMER—,

6 ERRAIFE 8

6 SEERFITE

MNIST =B A PyTorch, S .bin f5 CBMEIRE, iR 28x28 Bl 784 mE, #HIERF
softmax BX argmax. 52Z main.c ix 1000 KE, F1J10ms/ik (£1%), BohTFE XX HiFE: arm-
linux-gnueabi-gcc -03 -mfpu=neon src/*.c -o mnist_arm, Raspberry Pi4 Lk 15ms/iK,
B 41925 EM, src 8% OMEIR, models 77 .bin, tests BEEER,

7 BREEST R

INT8 21k per-tensor scale: FiitE min/max, #IE GEMM A int32 £/N2&fE dequant, Transformer
BERAN Attention(Q, K, V) = softmaz(QKT /Vd)V, /MEEF GEMM 3 QKV & scaled dot-
product.

LEIHRUEG D XBEIFRES, ESEERERSE

8 SRS E

MERKRTZREM, BRSRE (INE FPI16, BUE FP32) MKIGHL0IE, R EE 2 REE, KIEELR
AMBE. BENBLEFTFE: MHET weights[i] = ntohf(raw(i]) (FEBEXMER float ik,
AR assert BT, 90 assert(fabs(gemm_test() - expected) < 1e-5), Python HIZ<EIRLAR
E-bayish

9 Zit5EE

4y CHESIZER T TREBEESRIE, MaEREEAES. RHKAIM GPU 2#f via CUDA C, sEHEMZEM
ONNX %% Co 3K GitHub T3k, REY PR I KRR FER K,

