BREFHESHIERK

wmFN
Feb 03,2026

HEERRANEES DR, BHEMHHE (Discrete Event Simulation, DES) R—#iEATH, BilIE
PWERGRESNEREBHNWLETANGR, RENPLHRNEDZTIRE, HIg0, THARSED, BEREMN
ARSZEETMARS MR HRENERENS; TR, SYRNNEEAERFRBIL LSS, EREMLH, &
EENEESEmPETR T ZOENET; SRRENAETNTZRHRZZHIT. XENHEI 2838 T
2. EEMMFRRS, BIRARERLRIRED EMFNIEERT.

4t DES =il E IR ZE B . FHEEFTERMEERKEMTIR (Future Event List, FEL), BYEEs#A
FIBFRIEZEMHHE, MALXLEFESERERENB. FAERERAEERFRZLIES KN, BX
REIANLETXIHRAH. BREZFUNERED, EERRRISCANESE, 2 (Coroutines) BiHMtH,
Python B9 asyncio RIRi@BI async/await IEEREAFPTRERH L, Go BSH Goroutines E5BE
SSHBRRIE, Kotlin BIMMENIERIAZEMUH . XENBERLEALMNMEREE, BETRERFRLZ
BIRERE,

FIEET, DES FMEMHHREEEMBESS, FINRSHZRR OB, HS4FRmeErTAtt. X
RUAEERRT, ERAL TR HE. HENREMERRSR: BETEHHLEREMNE, B
FAZR) yield B await HIFITEEHMANEFERTT, RESNELENMENIR, XHSAKNSFHEIR,
XPBWAFAREN, RREEEAENZEE, BREEtIT,

AX EERHEBPRIZF REINEEZ 17E £ DES £6ti, ERMENKERIE, FEIETHELRASHIE
%, FAVEM DES #OMERANTF, BHHRITEERPBIEM, 1=H Python asyncio TRRAI, #1TMEREX
L, HREBRMAKE, XELEWEH . KEEEM, BRFNERE, ARREL, RERENA, B
XERS, REFEMRIIEESS DES 245,

1 BHFEMHhESbM

BHEGNER—MEESZ, EPRASRSNEBREARENREZL, MIFERMEEWK, flm, £
BIRSFBHNRGF, MBFIEMAATIERK, RSTHRMEDAIHKE, EMERSERFHS, XMEXS
PR R RS, BRFAVENESITE,

DES Mtz OAMBIEEMN. FHFIR. HHNLERR, EHRRESHENMLE, IRFIEIBEFLENS
FHRE—NEHEEHFRREEHT, BEBMATISZI, Fli0 Python BY heapq R3R., =/FAHH
P HATIRINEYIE], SEAFMZTRNET LI RERTRAANR, W SLFIHARSB[BHR. BHEHEHKA Next
Event Time (NET) 7i%: SRAENTIFRESMH, HHRMERLLERNZ,

¢4t DES SKHLEBREEME: REEMIIRES, BbRFEHNNEE, MRZNLMESEMNG, HHEH,
HEMKREMS. UTEHRBRR:

1 BEEMHHEEM

21

23

25

27

29

while FEL not empty:
t = FEL.peek().time
process_events_at(t)
advance_clock_to(t)

generate_future_events()

XNMERHARE BRSNS, #Rmifl. N7 EVEMR, &8 Python SIM—MERBRSZB[ATIRIMN. B

FTSNBERIR:

import heapq
import random
from dataclasses import dataclass

from typing import List

adataclass

class Event:
time: float
type: str

customer_id: int

class SingleServerQueue:
def __init__(self):
self.fel: List[Event] = [] # Future Event List
self.current_time = 0.0
self.server_busy = False
self.queue = [] # FERFFT
self.completed = 0

def schedule_event(self, event: Event):

heapq.heappush(self.fel, event)

def simulate(self, duration: float):
while self.fel:
event = heapq.heappop(self.fel)
if event.time > duration:
heapg.heappush(self.fel, event)
break
self.current_time = event.time

self.process_event(event)

1 BESEMHhERLM 3

XEERIBENX T Event FIBEEZERE. XEMAZE ID, SingleServerQueue VAL ETMNEHFIER fel.
Laihtial. IRSESRE. HFEBATIFISERITEEE. schedule_event 7A@ heapq. heappush FENE,
R/ MERETEHIF, simulate HABIFSEHER SN, GBHEDNNKNEMIATIFREY,; TNEHREEH
SSEESUN

WIBEHIIZ TR

20

22

def process_event(self, event: Event):
if event.tuype == 'arrival':
self.handle_arrival(event.customer_id)
elif event.type == 'departure’:

self.handle_departure(event.customer_id)

def handle_arrival(self, customer_id: int):

if not self.server_busy:
self.server_busy = True
service_time = random.expovariate(1.0) # IS HRARSATIE
dep_event = Event(self.current_time + service_time, 'departure’', customer_id

=)

self.schedule_event(dep_event)

else:

self.queue.append(customer_id)

def handle_departure(self, customer_id: int):
self.completed += 1
self.server_busy = False
if self.queue:
next_customer = self.queue.pop(0)
service_time = random.expovariate(1.0)
dep_event = Event(self.current_time + service_time, 'departure’,
< next_customer)

self.schedule_event(dep_event)

process_event RIBEHF LB S L NIE, FAFEH handle_arrival MERSEE: THIZENAEEFF
KEMH, £ random. expovariate £ RIS D HARSETE GIER D) ; ICREMENK. BEFELEH
handle_departure #IGTEpiT4, BHKARSS 2, ENFIIETNREEUMFEAERRS. XL ESSHIM
HEBAIBAE . ERMARELHERIR O(log n) BE, RN KITH 2iEfTIE,.

BITEIMBINCOLRS:

1|def run_simulation():

3

sim = SingleServerQueue()
num_customers = 1000
interarrival = 0.9 # FYEX[EF

[

~

2 H¥27E DES HHI1ER 4

for i in range(num_customers):
arrival_time = i * interarrival + random.expovariate(l / interarrival)
sim.schedule_event(Event(arrival_time, 'arrival', i))
sim.simulate(1000)

print(f"Completed_ customers: {sim.completed}")

XEBEp 1000 MEIAEMS, KIERERERE, &P 1000 B E R /EHHTEAMmE R, XNREIRTRTESR
DES W9i58E, BB TN FAEF[FEREE server_busy, ZEHHLFFoHEIET, MHREMIVRETIM
FRWMBENHRS. E8HAIRT, XMIHEUY &,

2 hi27E DES H1ER

WRER—MAFPSIMERZESNE, SLEFTHERR, ERKBIRERRAE, MEHEFER yield

EHITITR R, XHREFHELETXUIR, NEFERDFBIRS. Python B asyncio T async def EX

HI2, await BERITEERFKEN; Go B Goroutines BIE{THHAE, BREZE/1 KB #%; JavaScript 1§

Generators f yield SEEIZUME; Kotlin MEMIEREMLH%L, EBHRtK.

7£ DES #, WEEMUREBETEEHLAEUANIE. FRAEEBRTIERASCHEDAES: STMERIRSS

1’!573’[7}\7?”1:1?, IEFHEE await ZURAI AR yield ITHIN. AE R4 FEL, RINEIMENIZ, SSIVFEHBTEIH
XMBRGT KA E DES: RS ERINER, MERMEGMEL,

ﬁE%‘%w%o B, EEBRTHRESLIESN: IS yield ILEMIR, FHEEENEIE, HRX, async/await

BAE, BRHRERE. Fl0, MENE await lRSEEIA, EHRFAIIRE. £=, IREHEL: BE1E

AE{THAINE, TEEBRIER. $H, ZREEFEDBERRSATILIEBEY, W asyncio.Queue K

Go channels, #BRERPIIIFEHIFZE,

JAEREXE: ERE FEL MMEMELE, RUFINEREES, MEXNNE, FUWER vield WEMHEN

FEL, X#i&it# DES BHEIE# SIMEEES—, RARFAIRMERIIEEE,

3 iZfL1LRY DES 23

hiE DES 1EZEMZ L EEHIHAESS CoroutineEventScheduler, EEIE FEL 2L dEHY; BHEEE3
SimulationClock ZHFEEME,;, RREERARLIIIHRNERS. BIEREMNBIENTIE, SIEM®R
WIZSEHHEAN FEL; AESOELFINEISEHE, SRRNIMEMEZNIT, MWIEERIEHEEIR FEL; TN
iB1H yield FF. ZFEMWREEZEE X AIMEXDIZR.

LT ZHA Python asyncio SEMAITTE LRSS BTN, B o ARINBT ¢RI B4

import asyncio

import heapq

import random

from typing import Dict, Any, Coroutine

from dataclasses import dataclass

adataclass

3 ihiEfLREY DES K

class SimEvent:
time: float

coroutine_id: str

class SimulationClock:
def __init__(self):

self.current_time = 0.0

def advance_to(self, t: float):
t

self.current_time

21

23

25

SimulationClock fE B4 L FIAYIE], advance_to HEHZEIEERZl, SimEvent #FERTEIFIHIE ID, BT

FEL #7.
TESRKIAT, BEROM:

class CoroutineEventScheduler:
def __init__(self, clock: SimulationClock):
self.clock = clock
self.fel: list[SimEvent] = []
self.coroutines: Dict[str, Coroutine[Any, Any, Any]] = {}

self.coroutine_results: Dict[str, Any] = {}

def schedule(self, coro_id: str, delay: float, coro: Coroutine):
event = SimEvent(self.clock.current_time + delay, coro_id)
heapq.heappush(self.fel, event)

self.coroutines[coro_id] = coro

async def run(self, duration: float):
while self.fel:
event = heapq.heappop(self.fel)
if event.time > duration:
heapg.heappush(self.fel, event)
break
self.clock.advance_to(event.time)
if event.coroutine_id in self.coroutines:
try:
coro = self.coroutines.pop(event.coroutine_id)
result = await coro
self.coroutine_results[event.coroutine_id] = result
except asyncio.CancelledError:

pass

3 ihiEfLREY DES K 6

CoroutineEventScheduler A5 . FEL . hiEFHMEREME, schedule EERFRAENE,
N FEL HEEFEMEN R, run RTEIFRHEN, HFHEH, await WENEETRK, FEER. XEXMT
HIZIREHAY BT [E)HE# . S BHEHTE FEL BTERE.

IMESEMEANIE: MEMRSE. RSB[NIEBEERIR:

20

o

async def server_coro(scheduler: CoroutineEventScheduler, server_id: str):
queue: asyncio.Queue[int] = asyncio.Queue()

completed = 0

async def serve_customer(customer_id: int):
nonlocal completed
service_time = random.expovariate(1.0)
await asyncio.sleep(service_time) # 1EIUARSS, IEFEE
completed += 1
print(f"Server {server_id} completed customer, {customer_id}, total: {completed}

s ")

while True:

try:
customer_id = await asyncio.wait_for(queue.get(), timeout=0.1)
await serve_customer(customer_id)
queue.task_done()

except asyncio.TimeoutError:
10E FEL BREMEMNH, THEE
if not scheduler.fel:

break

BR 55 23 th A2 82 asyncio.Queue fEAFRFPATI, serve_customer FIHIERINIEENAR S BT 18], FH
asyncio.sleep IFFEEEF (IRIUBTEMHERH), B await queue.get() BEEMEIIX, BHKE
FEL S TPRER, ZIGITIERENTIE A F L @B,

[FRE AR E R

async def customer_coro(scheduler: CoroutineEventScheduler, customer_id: int,
< server_id: str):
FLAFIERRS
server_queue = scheduler.coroutine_results.get(f"{server_id}_queue"”, asyncio.Queue
=)
await server_queue.put(customer_id)

print(f"Customer,{customer_id} arrived and queued™)

FEEE await put EARSS2EPATY, FEFEENRA

ol

4 SRMNUSREKE 7

FTEENAOBE .

async def run_coroutine_simulation():
clock = SimulationClock()

scheduler = CoroutineEventScheduler(clock)

+ TEEIRSS[NE (GZENMEE)
server_coro_instance = server_coro(scheduler, "serveril")

scheduler.schedule("serverl", 0, server_coro_instance)

+ FEME

num_customers = 1000

interarrival = 0.9

for i in range(num_customers):
arrival_delay = i * interarrival + random.expovariate(l / interarrival)
customer_coro_instance = customer_coro(scheduler, i, "serveril”)

scheduler.schedule(f"customer_{i}", arrival_delay, customer_coro_instance)

await scheduler.run(1000)

print("Simulation completed”)

1B1T

asyncio.run(run_coroutine_simulation())

ANOBIEN#HHIAES, TAERSSHME (ERO0), RAEAEMNMELERNZRIXEIREE,
scheduler.run BENENRF. XPMRHIT BMER: ZRSBRAFLEFIUZ A server_coro, MLEIRTL
REEEEE,

MEEN L BRI, FEEENIRF, FHREEFFLIE 10k B4/, K, &I2MA 50k, BRiFHE
R, IELILE 200k, Z#F 10w+ H&, RIE31X 80 7. BAEET await ERATIEMEHERIAE, Bi
FRERE,

4 BEMUSRESLE

B—SMALASINMRER FEL: ¥ 2 heapq I (priority, time, event) 7o, ZIFERAEHFLLH, 9
730 DES &S5BS, WA asyncio JHZk Redis B, XWMET = FEL @A, KRBEENE
asyncio.sleep ERAYIEETEN time.sleep, FFIRMSINR, HIRVEBEFBNEREEE. try/except
BE await, KMNZEEZHEH

BEXEFIMYIRCEERE: TTREMEER, XEZRBFMIZER asyncio.Semaphore B, BREH, BEMNE
f, MEYEIHE await SEAA, FHREHEH TF. Python E SimPy BEX#FMEEY B, & EEEM
9%,

ARBR: hi2iEE I/0 %% DES, RE CPU Z&ES (45E multiprocessing)o TAIXEE asyncio HRIBER

5 HiLS5RE 8

Iﬂﬁﬂ Giodebugo E_I‘?r]ﬁ’l‘iMi*ﬂTdJ‘*anfz Kubernetes %ﬁ: ﬁiﬁ'%\l%\é%ﬁﬁ FELO

5 ZR5RE

DES 5iWMEEEHMEM. AIRESR: MaERFA 10 Fl L, RE3fEE 50%. WEEEHHAREAMER, &
FEISER.

K3k, Al/ML ERRKFSAL DES £5; WebAssembly BB % 2 H12 DES; =IE4E Serverless
AWS Lambda thiZbEHIE,

FEMAIEM GitHub B F [HEE). il fork LI, LK QA X!

6 PR

SEXHEE (Simulation Modeling and Analysis) (Law %), Coroutine-based DES i£X, UK
Python asyncio. SimPy 314,

ANER: FEL — RFEEHFIR; NET — T—F48dE,

TEABAE: [GitHub #E).

