
1

Emacs Lisp游戏编程入门

王思成

Feb 05, 2026

Emacs Lisp游戏编程拥有独特的魅力，它源于 Emacs作为「终极编辑器」的无限扩展性。Emacs不仅仅是
一个文本编辑器，更是一个运行 Lisp方言的完整运行时环境，这使得开发者能够将游戏逻辑无缝嵌入日常工作
流中。选择 Emacs Lisp开发游戏的原因在于其轻量级特性：无需复杂的构建管道，只需几行代码即可启动一
个交互式游戏；其交互性极强，通过 ielm或直接评估缓冲区内容，你可以实时调试游戏状态；此外，可视化调
试工具如 edebug让复杂逻辑一目了然；Emacs社区还提供了丰富的游戏源码资源，从经典的 dunnet文本冒
险到现代 Tetris实现，应有尽有。
本文面向 Emacs用户、Lisp爱好者和游戏开发入门者。如果你已经能熟练使用 Emacs的基本命令，并理解
Lisp的列表、函数和闭包概念，就可以跟随本文逐步构建完整游戏。文章从环境搭建开始，逐步深入基础概念、
核心组件，然后通过 Snake和 Tetris两个实战项目展示完整实现，最后探讨高级主题和发布流程。通过这些内
容，你将掌握在 Emacs中创建互动娱乐的艺术。
文章结构清晰：先准备开发环境，然后讲解游戏基础概念，接着构建核心组件，通过两个项目实战演练高级技巧，
并以发布和扩展建议收尾。先决条件包括基础 Emacs使用经验和基本 Lisp知识，如 (car lst)和 (defun

...) 的用法。

1 环境准备
安装和配置 Emacs是第一步。推荐使用 Emacs 27或更高版本，这些版本内置了现代化的包管理器和
性能优化。启动 Emacs后，确保 package.el已启用，通过在 init.el中添加 (require 'package)并
配置MELPA仓库，即可安装扩展。use-package是高效管理包的首选，它简化了依赖加载和配置，例如
(use-package dash :ensure t)即可自动安装并加载 dash.el函数式工具集。
必需的 Emacs Lisp库包括内置的 cl-lib，提供通用 Lisp函数如 cl-loop和 cl-find；subr-x从 Emacs
25开始内置，用于字符串处理如 string-trim；dash.el来自MELPA，提供链式操作如 →>；可选的 emacs-

game框架可在 GitHub获取，用于快速搭建游戏骨架。这些库通过 (require '库名)加载，确保在游戏代码
前调用。
测试环境的最佳方式是编写一个“Hello World”游戏片段。考虑以下代码，它在专用缓冲区中显示问候并响应
按键：

1 (defun hello-game ()

"第一个 Emacs Lisp 游戏片段。"

3 (interactive)

(let ((buffer (get-buffer-create "*Hello Game*")))

5 (switch-to-buffer buffer)



2 Emacs Lisp游戏基础概念 2

(erase-buffer)

7 (insert "欢迎来到 Emacs 游戏世界！按任意键继续，按 q 退出。\n")

(let ((event (read-event)))

9 (when (not (eq event ?q))

(insert (format "你按了 %s！" event))

11 (hello-game))))) ; 递归调用实现循环

这段代码首先创建名为 *Hello Game*的缓冲区并切换到它，然后擦除内容并插入欢迎消息。read-event阻
塞等待用户输入事件，当输入不是 q时，格式化显示按键并递归调用自身，形成简单循环。调用 (hello-game)

即可启动，体验 Emacs缓冲区作为游戏画布的即时反馈。这种测试验证了环境就绪。
开发工具推荐包括 ielm（交互式评估模式，通过 M-x ielm启动，用于逐行测试表达式）、调试模式（M-x

debug-on-error捕获运行时错误）和 edebug（用于函数级步进调试，例如 (edebug-defun my-function)

后 M-x edebug-my-function）。这些工具让游戏开发如鱼得水。

2 Emacs Lisp 游戏基础概念
Emacs缓冲区天然充当游戏画布，它本质上是一个文本网格系统，每行由换行符分隔，每列由字符位置定
义。通过插入字符、设置文本属性或使用覆盖（overlay），你可以实现动态渲染。例如，文本属性 (face

'highlight)可为特定区域添加高亮，而覆盖允许在不修改底层文本的情况下叠加视觉效果。
游戏循环是核心，通常采用 while循环形式。以下是典型实现：

1 (defun game-loop (state)

"基础游戏循环：更新、渲染、输入。"

3 (while (not (game-over-p state))

(setq state (update-state state))

5 (render state)

(accept-input state)))

这里 state是游戏状态（如玩家位置、分数），game-over-p检查结束条件如碰撞。update-state处理逻辑
更新，如移动物体；render重绘缓冲区；accept-input读取用户事件并修改状态。setq更新状态变量，确
保循环中使用最新值。这种结构简单高效，适合终端式游戏。
输入处理支持事件驱动和轮询两种模式。事件驱动使用 read-event阻塞等待，适合回合制游戏；轮询通过
定时器定期检查键盘状态，适用于实时游戏。时间控制依赖 run-with-timer，例如 (run-with-timer 0.1

nil #'game-tick state)每 0.1秒调用一次游戏刻（tick），实现帧率管理。帧率通过调整间隔控制，例如
60 FPS对应约 16ms间隔，但需注意 Emacs的单线程性质，避免阻塞 UI。

3 核心游戏组件
游戏状态管理采用 alist或 plist结构，便于扩展。例如，Snake游戏状态可表示为 ((pos (5 5)) (dir

right) (score 0))，通过 (assoc 'pos state)访问位置，(plist-get state :dir)处理 plist。自定
义 struct使用 cl-defstruct，如 (cl-defstruct game-state pos dir score)，提供访问器如 game-

state-pos。状态序列化通过 prin1-to-string转为字符串保存至文件，反序列化用 read加载，支持存档



4 实战项目 1：Snake（贪吃蛇） 3

功能。
渲染系统从纯文本起步，向高级方法演进。纯文本简单兼容，Unicode块字符如█提升视觉；覆盖支持动画效
果；图像通过 image.el显示 PNG。考虑一个简单渲染函数：

(defun render (state)

2 "渲染游戏状态到缓冲区。"

(with-current-buffer (get-buffer-create "*Game*")

4 (erase-buffer)

(let ((pos (cdr (assoc 'pos state))))

6 (goto-char (point-min))

(insert "游戏画布 \n")

8 (dotimes (row 20)

(dotimes (col 40)

10 (if (equal (list row col) pos)

(insert "█") ; 玩家位置
12 (insert " ")))

(insert "\n")))))

此函数切换到游戏缓冲区，擦除旧内容，在 20x40网格中定位玩家 (row col)并插入块字符█，其余填
充空格。dotimes实现嵌套循环模拟网格，goto-char和 insert操作缓冲区内容。这种网格渲染适用于
Roguelike游戏。
输入处理使用 read-key或 read-event。键盘事件如 (let ((key (read-key))) (pcase key (?w

(update-dir 'up)) ...)) 通过 pcase模式匹配处理方向键；鼠标支持 read-event捕获点击坐标；自定
义绑定通过 (local-set-key (kbd C-c C-g) #'game-toggle)在游戏缓冲区设置快捷键。碰撞检测实现
网格 AABB（轴对齐包围盒）：对于位置 (x1 y1)和 (x2 y2)，若 and (<= x1 x2) (<= y1 y2) (>= x1

x2) (>= y1 y2)则碰撞。简单物理模拟添加速度和摩擦，例如 new-pos = (list (+ x (* vx dt)) (+

y (* vy dt)))，dt为时间步长。

4 实战项目 1：Snake（贪吃蛇）
Snake游戏的核心循环是蛇移动、吃食物生长、碰撞检测结束。评分基于食物数量，结束条件包括撞墙或自撞。
游戏设计文档简述：20x20网格，蛇初始长度 3，食物随机生成。
逐步实现从状态定义开始：

1 (defvar snake-game-buffer nil)

(defvar snake-state '((snake ((1 1) (1 2) (1 3))) (dir right) (food (10 10)) (score

↪→ 0)))

3

(defun init-snake ()

5 "初始化蛇游戏。"

(setq snake-game-buffer (get-buffer-create "*Snake*"))

7 (switch-to-buffer snake-game-buffer)



4 实战项目 1：Snake（贪吃蛇） 4

(snake-render snake-state)

9 (local-set-key (kbd "q") #'snake-quit)

(local-set-key (kbd "<up>") (lambda () (interactive) (snake-turn 'up)))

11 ;; 类似绑定 down, left, right

(run-with-timer 0.2 0.2 #'snake-update))

snake-state使用 alist：snake是链表表示蛇身，从头到尾；dir为当前方向；food为食物位置；score计
分。init-snake创建缓冲区，渲染初始状态，绑定方向键和退出键 q，启动 0.2秒间隔的定时器驱动更新。方
向绑定使用 lambda捕获 interactive标记，确保菜单可见。
渲染函数如下：

(defun snake-render (state)

2 "渲染蛇游戏。"

(with-current-buffer snake-game-buffer

4 (erase-buffer)

(insert (format "分数 : %d\n" (cdr (assoc 'score state))))

6 (dotimes (row 21)

(dotimes (col 25)

8 (let ((pos (list row col)))

(cond ((member pos (cdr (assoc 'snake state)))

10 (insert "█"))

((equal pos (cdr (assoc 'food state)))

12 (insert "●"))

(t (insert " ")))))

14 (insert "\n"))))

类似前述网格渲染，此处检查位置是否在蛇身链表中（member），或匹配食物则插入圆点●，其余空格。format
显示分数。
更新逻辑核心：

(defun snake-update ()

2 "蛇游戏更新刻。"

(let* ((state snake-state)

4 (snake (cdr (assoc 'snake state)))

(head (car snake))

6 (dir (cdr (assoc 'dir state)))

(new-head (pcase dir

8 ('up (list (1- (car head)) (cadr head)))

('down (list (1+ (car head)) (cadr head)))

10 ('left (list (car head) (1- (cadr head))))

('right (list (car head) (1+ (cadr head))))))

12 (new-snake (cons new-head snake))



5 实战项目 2：Tetris（俄罗斯方块） 5

(score (cdr (assoc 'score state))))

14 (when (or (< (car new-head) 1) (> (car new-head) 20)

(< (cadr new-head) 1) (> (cadr new-head) 24)

16 (member new-head (cdr snake)))

(snake-game-over))

18 (when (equal new-head (cdr (assoc 'food state)))

(setq score (1+ score))

20 (setq new-snake (cons new-head snake)) ; 不移除尾巴，生长
(setq state (snake-new-food state)))

22 (setq snake-state (list (cons 'snake new-snake)

(cons 'dir dir)

24 (cons 'food (cdr (assoc 'food state)))

(cons 'score score)))

26 (snake-render snake-state)))

计算新头位置基于方向，pcase匹配计算坐标偏移。新蛇为 (cons new-head old-snake)。边界检查若超出
1-20行或 1-24列，或新头撞上蛇身（除尾），则游戏结束。吃食物时分数增 1，不移除尾巴实现生长，并生成
新食物。最终更新全局 snake-state并重绘。蛇身链表自动管理长度，此实现捕捉了贪吃蛇精髓。
关键技术包括蛇身链表：头插入新位置，正常移动时需移除尾巴（此处简化，未显式移除以示生长逻辑）；食物
随机生成用 (list (+ 1 (random 20)) (+ 1 (random 24)))；边界反弹扩展可修改新头计算为折返。调
用 (init-snake)启动完整游戏。

5 实战项目 2：Tetris（俄罗斯方块）
Tetris设计围绕 Tetrominoes：七种方块形状，如 I形 [[1,1,1,1]]、O形等。核心循环包括落块、旋转、行
消除、难度递增。
方块形状定义为旋转状态列表，每个状态是 4x4矩阵偏移。核心算法从旋转开始：使用变换矩阵计算新位置。例
如，逆时针旋转公式为 x′ = xcos θ − y sin θ， y′ = x sin θ + y cos θ，θ = 90◦ 时简化为 (x′, y′) = (y,−x)。
渲染优化使用 Unicode方块和颜色：

(defface tetris-block '((t :background "blue" :foreground "white"))

2 "Tetris 方块样式。")

4 (defun tetris-render (state)

"渲染俄罗斯方块。"

6 (with-current-buffer "*Tetris*"

(erase-buffer)

8 (let ((board (cdr (assoc 'board state)))

(piece (cdr (assoc 'current-piece state)))

10 (pos (cdr (assoc 'pos state))))

(dotimes (row 22)



6 高级主题 6

12 (dotimes (col 12)

(let ((cell (aref (aref board row) col)))

14 (if (or (/= cell 0)

(tetris-piece-at-p piece pos row col))

16 (progn

(put-text-property (point) (1+ (point))

18 'face 'tetris-block)

(insert "█ "))

20 (insert "□ ")))))

(insert "\n")))))

board是 22x12数组（vector of vector），0表示空。tetris-piece-at-p检查当前方块是否覆盖 (row

col)。put-text-property为块设置面（face），实现彩色渲染。空格用□填充。
行消除扫描完整行：

1 (defun tetris-clear-lines (board)

"清除满行并下移。"

3 (let ((new-board (make-vector 22 (make-vector 12 0))))

(let ((write-row 0))

5 (dotimes (read-row 22)

(let ((full (cl-every (lambda (x) (/= x 0)) (aref board read-row))))

7 (if full

(cl-incf (cdr (assoc 'lines-cleared state))) ; 更新分数
9 (aset new-board write-row (copy-sequence (aref board read-row)))

(cl-incf write-row)))))

11 (list 'board new-board)))

cl-every检查行是否全非零，若满行则跳过，下移其余行至 new-board。分数基于清除行数递增。
落块预测用模拟下移检查碰撞，难度通过缩短定时器间隔实现。此项目整合了旋转矩阵、数组操作和属性渲染，
完整代码约 200行。

6 高级主题
声音支持通过 play-sound API，例如 (play-sound eat.wav)，需预置音频文件，支持MIDI/OGG格式嵌入
资源目录。
多人游戏利用 Emacs服务器模式 (server-start)，通过 emacsclient连接多实例；网络集成简单
WebSocket使用 websocket.el包，发送 JSON序列化状态。
性能优化聚焦渲染局部重绘：维护脏矩形列表，仅更新变化区域，避免全擦除；垃圾回收用 (garbage-collect)

在低负载时手动触发；缓冲区通过 (bury-buffer)隐藏非活跃游戏。
跨平台打包用 make生成独立 tarball，easy-install.el简化用户安装。测试框架推荐 buttercup，编写断
言如 (it should move snake (expect new-head :to-equal expected))。



7 游戏发布和社区分享 7

7 游戏发布和社区分享
MELPA打包需 package-lint检查，创建 .el和 .pkg.el，提交至MELPA仓库。GitHub Pages可托管在
线 Demo，通过 js-emacs模拟 Emacs环境。
Emacs Lisp游戏社区资源丰富，如 GitHub上的 tetris.el提供旋转优化，内置 dunnet展示文本冒险，
itch.io的 Emacs Game Jam鼓励参赛。常见问题包括定时器泄漏（用 cancel-timer清理）和缓冲区焦点
丢失（用 select-window修复）。

8 扩展阅读和项目挑战
进阶项目从 Roguelike开始，焦点程序生成地图和视野锥（FOV）算法如阴影投射；Platformer需物理引擎模
拟跳跃，重力 a = −9.8 dt²；Puzzle使用 A*状态搜索；FPS挑战 3D投影和射线追踪。
推荐书籍包括《Mastering Emacs》详解扩展、《Land of Lisp》趣味游戏章节，以及 Emacs Lisp游戏源码
合集。

9 结论
通过本文，你已掌握 Emacs Lisp游戏开发的完整链路，从缓冲区画布到复杂模拟。Emacs Lisp游戏体现了
Lisp的简洁哲学：代码即数据，调试即交互。这不仅是技术实践，更是重塑生产力的艺术。现在，动手开发你
的第一款游戏，加入社区分享成果！

10 附录
完整代码仓库见 GitHub emacs-game-examples。常用函数速查：read-event输入、run-with-timer循
环、overlay-put动态效果。故障排除：定时器不触发检查 timer-list，渲染卡顿启用 garbage-collect-

at-exit。鸣谢 Emacs社区贡献者。


