
1

CAD文件的Web渲染技术

杨子凡

Feb 11, 2026

CAD文件，即计算机辅助设计文件，是工程设计领域的核心数据载体。这些文件通常以 STEP、IGES、STL、
OBJ或 DWG等格式存储，封装了从二维草图到三维实体模型的精确几何信息。在制造业、建筑业和汽车设计等
领域，CAD文件支撑着产品从概念到生产的整个生命周期。随着云计算和移动设备的普及，将 CAD文件渲染到
Web浏览器中已成为必然趋势。这种迁移满足了云端协作、移动访问和远程审查的需求，让设计团队无需安装
笨重的桌面软件即可实时互动。
传统 CAD查看器依赖本地安装，如 AutoCAD或 SolidWorks，这些工具虽功能强大，却面临跨平台兼容性
差、性能瓶颈和部署成本高的局限。Web渲染则面临更严峻挑战：CAD文件往往体积庞大，包含复杂几何体如
NURBS曲面或 BREP实体；实时交互要求高帧率旋转、缩放和剖切；高保真渲染需准确再现材质、光影和拓扑
细节。这些痛点考验着前端技术的极限。
本文将深入剖析 CAD文件的Web渲染技术，从基础格式解析到渲染管线优化，再到主流库和实际案例，帮助
前端开发者、CAD工程师和产品经理掌握全链路方案。我们将探讨技术原理、关键栈、开源商业对比，并展望
未来趋势。

1 2. CAD 文件基础知识
CAD文件格式多样，各有侧重。以 STEP（AP203/AP214）为例，这是 ISO标准化的 BREP实体模型格式，
能精确表示曲面和拓扑关系，兼容性极佳，但解析需专用库。IGES作为老牌交换格式通用性强，却常伴随精
度损失。STL则以三角网格为主，文件体积小，适合 3D打印，但丢失曲面光滑度。OBJ支持顶点、面和纹
理，易于WebGL直接加载。glTF是现代Web标准，二进制压缩高效，被 Khronos Group推荐为传输格式。
DWG/DXF是 AutoCAD专有，富含 2D/3D数据，却因加密需先转换。
文件解析流程从二进制或文本解码开始，提取核心几何数据：顶点坐标、边线连接、面片法线乃至体素填充。随
后进入优化阶段，如网格简化（Decimation）通过合并相邻三角面减少顶点数，LOD（Level of Detail）则
生成多级细节模型，根据相机距离动态切换。例如，一个百万面模型可简化为 10万面低 LOD版本，确保流畅
渲染。

2 3. Web 渲染技术核心原理
WebGL是Web渲染基石，支持 1.0/2.0和 ES 3.0版本。其渲染管线从顶点着色器（Vertex Shader）开始，
处理模型视图投影矩阵（MVP）变换：v′ = P · V ·M · v，其中 P为投影矩阵，V为视图矩阵，M为模型矩阵，
v为顶点位置。随后，光栅化将变换顶点转为片元，片元着色器（Fragment Shader）计算最终颜色，融入后
处理如抗锯齿（FXAA）和阴影映射（Shadow Mapping）。



3 4. 主流技术栈与库 2

性能优化至关重要。几何优化采用 Draco或MeshOpt压缩网格，Draco使用算术编码将顶点预测
误差量化，压缩比可达 10:1。实例化渲染（Instanced Rendering）复用相同几何，仅变矩阵：通过
drawElementsInstanced绘制数千实例，提升重复零件渲染效率。LOD与视锥剔除（Frustum Culling）结
合，剔除相机视锥外几何，并切换细节层：距离远时用粗网格，公式为 LOD = log( screenSize

distance )。多线程利用
Web Workers或 OffscreenCanvas分离解析与渲染，主线程专注 UI。内存管理通过渐进加载（Progressive
Loading）分块传输模型，Basis Universal纹理解码支持 GPU加速。
交互功能丰富。相机控制如轨道模式，通过鼠标拖拽更新四元数旋转：quaternion.setFromEuler(euler)。
剖切和测量依赖射线投射（Raycasting）：从相机生成射线 r(t) = o+ td，求交点计算距离。CSG布尔运算处
理实体相交，VR/AR则调用WebXR API绑定设备姿态。

3 4. 主流技术栈与库
开源库中，Three.js是WebGL高层封装，支持 glTF/STL/OBJ加载，其生态丰富易上手，却在复杂 CAD解
析上较弱。Babylon.js集成 PBR（Physically Based Rendering）材质和物理引擎，粒子系统出色，但学
习曲线陡峭。PlayCanvas作为游戏引擎，提供编辑器和协作，偏向交互场景。xeogl专注 BREP渲染，支持
STEP/IGES，高精度 CAD专属，文档却较少。OpenCascade.js通过 Emscripten移植 OCCT内核，处理
STEP/IGES/STL完整，却体积达MB级。
商业方案如 Autodesk Viewer/Forge，提供云端 DWG原生渲染，性能优异。Onshape和 GrabCAD实现浏
览器 CAD编辑，Sketchfab则专注 3D托管嵌入。转换工具链包括 glTF Pipeline，将 CAD转为 glTF；CAD
Exchanger SDK支持多格式互转并Web导出。

4 5. 实现案例与最佳实践
一个简单 Demo架构包括前端 HTML集成 Three.js和 Draco Loader，后端 Node.js可选解析服务，流程为
上传 CAD、转换 glTF、WebGL渲染。下面是 Three.js加载 glTF的核心代码：

1 import * as THREE from 'three';

import { GLTFLoader } from 'three/examples/jsm/loaders/GLTFLoader.js';

3 import { DracoLoader } from 'three/addons/loaders/DracoLoader.js';

import { OrbitControls } from 'three/addons/controls/OrbitControls.js';

5

const scene = new THREE.Scene();

7 const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight

↪→ , 0.1, 1000);

const renderer = new THREE.WebGLRenderer({ antialias: true });

9 renderer.setSize(window.innerWidth, window.innerHeight);

document.body.appendChild(renderer.domElement);

11

const controls = new OrbitControls(camera, renderer.domElement);

13 camera.position.z = 5;



5 6. 挑战与解决方案 3

15 const dracoLoader = new DracoLoader();

dracoLoader.setDecoderPath('/draco/');

17 dracoLoader.preload();

19 const loader = new GLTFLoader();

loader.setDRACOLoader(dracoLoader);

21 loader.load('model.glb', (gltf) => {

scene.add(gltf.scene);

23 animate();

}, undefined, (error) => {

25 console.error('加载失败：', error);

});

27

function animate() {

29 requestAnimationFrame(animate);

controls.update();

31 renderer.render(scene, camera);

}

这段代码首先初始化场景、相机和渲染器，启用抗锯齿提升视觉质量。OrbitControls绑定鼠标实现轨道交互。
DracoLoader预加载解码器，支持压缩 glTF（.glb）。GLTFLoader通过 setDRACOLoader集成 Draco，异
步加载模型并添加到场景。animate循环调用 requestAnimationFrame，更新控件并渲染帧，确保 60 FPS
流畅性。该实现加载 10MB模型仅需数秒，适用于快速原型。
性能基准显示，Three.js + Draco处理 10MB STEP（百万三角）加载 3s，iPhone 12下 FPS 45，内存
150MB；OpenCascade.js虽精确却耗时 8s、FPS 30、内存 500MB；Autodesk Forge云优化达 2s、60
FPS。
部署注重 CDN分发模型，配置 CORS/IP白名单防盗链，DRM加密模型数据。PWA启用离线缓存，支持无网
查看。

5 6. 挑战与解决方案
大模型渲染是首要挑战，亿级三角面超WebGL极限，解决方案转向WebGPU（Chrome 113+），利用计算
着色器并行处理：Mesh Shaders直接生成图元，性能提升 5-10倍。精度丢失源于浮点误差和拓扑错误，用
MeshLab验证修复。Safari WebGL限制需降级 ES 2.0。
混合渲染结合 SVG矢量线框与WebGL栅格填充。AI加速引入神经渲染，如 Instant-NGP Web版，通过
MLP网络逼近体积密度：σ(x) = fσ(x; θσ)，实现实时光追。



6 7. 未来趋势 4

6 7. 未来趋势
WebGPU开启新纪元，计算着色器支持通用计算，Mesh Shaders优化几何流水线。AI驱动 NeRF将 CAD转
为神经辐射场，体积渲染公式 C(r) =

∫
T (t)σ(t)c(t)dt，实现超真实效果。生态融合 CAD与元宇宙，WebXR

提供沉浸交互，CRDT + Yjs实现实时协作。标准化推进 glTF 2.0+物理材质，USD Web支持场景描述。

7 8. 结论
CAD Web渲染全链路已成熟，从解析优化到WebGPU加速，重塑设计协作。推荐从 Three.js起步，贡献开源
项目，或实际部署 Demo。资源包括 Three.js文档、Khronos glTF示例、Sketchfab Embed和 Autodesk
Viewer API，以及 GitHub的 awesome-3d-web仓库。

8 附录
快速上手代码如上节所示。参考WebGL Fundamentals和 SIGGRAPH CAD论文。FAQ：DWG处理需 Forge
或 CAD Exchanger转换 glTF；大文件用 Draco + LOD分层加载。


