JavaScript S2IRY HDR Bl A ER AR

s,

=

eSS
2,

Feb 1

n

026

0.1 1.1 HDR EfRAEHR

HDR B, BIEm&CEER, BiHRAE2RNTBERRGNEEEENATRER, ELttRPaERTS
FEEEMRERZEIRRS A ESTEE, M HDR KAEIERTEREAERTGERE, ERETEY RE
BTEHEHERHEE (nits), MMMRBESATIHILBARTERLRK. SZxtt, LDR (RuSERE) EGZIR
F 8 (U @EREHYRD, BHEREERI 0-255 MWREE, SHENIBIARXERATHRZ, £ Web N
A%, HDR WMERZOE, FINREMILFIREEAENTINMR, 5| ZERIMMSTRESR, AR/VR 17
RN2wTEBARNRBAED, MELdmiE T AN EEILA R SEiEZER .

0.2 1.2 JavaScript EEIGAEBFRRNAEE

JavaScript EANRREEMEIES, EARBANEGLRERES, BT Canvas 2D API a] LUHITERMGE
B1E, WebGL NiEH GPU INZEMNECRIRRIE, M Web Workers 1 OffscreenCanvas #—F R % L1
BREN, XLERARAESFESN KRG HDR LB ATTEE, #% T IRSSFEBAIEHF R, AXSEMEE
ERTEBR Tone Mapping 8%, BFIESHELITEN HDR BEGAEEE, BfeMEEr=4% Web
W o

0.3 1.3 3%EFFIIRAIA

RENAEZEM JavaScript HIEEK, 835 ES6+ B AR P LIE; WK HTML Canvas API WE AR X,
NAFIEGMGRIIRRE, toh, THREENEMAEES, NREcENERTIR, SEBTIEFmETE
iR,

1 2. HDR EGEIEL
1.1 2.1 sh&SEES Tone Mapping

B REBMEIASTEERX 101 ¢ 1, MHRE 2RE$IEHF 100-1000 nits MIEE=E, 7% HDR iz
%l LDR £/~, Tone Mapping Operators (TMO) 2 %R, £/ TMO i Reinhard &i&ilid 3 #E 455k
MYSIEE, ERFRRN L, = lfTw, Hip L, hERARE, L, AETR=E, HEF TMO % Drago M3IN
RESEH, HTEENMEMES: Ly = logy (L, + 1) x bias, BiFREEBILLE, XEEETHET XE
5 2R84,

2 3. JavaScript B &S 2

1.2 2.2 HDR X 5#HIERT

HDR El#% &M Radiance (.hdr) 3 OpenEXR R EMZERGRIUE. HIEMN Web B9 8 8IERE, 5IN
RGBE (RGB + #£Zi5%) %i: S 1MM&EKM RGB@EM 8 UERHFKRT, A 8 (s, LMY 30 (HEE.
FRBARA C = M x 2E-128, Heh M RE#, E Hig#. & JavaScript 1, %1% sRGB B =@k
2% RGB LUHTYIERITE . &I4fE L = (s/255)%2, ACES HFinAHGT M —PitElL T X—318,

1.3 23 BXEmME

ZRIRMEETREFRBICENEGRFYIEM HDR, A Exposure Fusion BiAITENE: MMENE
S =1-exp(-Ay), SHENEETHEAHEF, MEE A, BANEASHRY. XENEREE,
HDR RERN L, = Y wig(EV;)/ Y wi, EHH g ABHIMAN KL (CRF), Fi@d Debevec HiEfhito

2 3. JavaScript iR EE
2.1 3.1 % APl 5%

Canvas 2D API E&HRZERE, WEH ctx.drawImage(img, 0, 0) MEFEER., WebGL 2.0 {2 =148
E0I, IFFELIE, OffscreenCanvas A ¥FE Worker FES, BHRETAIEMAE, EW three.js B
RGBELoader aJHIENNE; .hdr XX,

22 3.2 EfGMNESF R iENE

fEF fetch A ImageBitmap MNE HDR ##E, SAG&D ctx.getImageData() JKEX Uint8ClampedArray,
%A Float32Array #1TfEE, RAIBNT:

async function loadHDRImage(url) {
const response = await fetch(url);
const arrayBuffer = await response.arrayBuffer();
const hdrData = parseRGBE(arrayBuffer); // BEEX RGBE fi#if2s
return new Float32Array(hdrData.pixels);

}

XERIDE @D fetch FREX HDR XM Z#HIEEE, arrayBuffer() iR[E] ArrayBuffer, FEEIARBENX
parseRGBE K ¥k f2HT RGBE w3, REUF ABREEARE Float32Array, ZI3EHMESHAEFER, ZiFE
I E,

2.3 3.3 %RefuibE bt

Web Workers EitEHEH G E&IE, £ postMessage 1£3# Typed Arrays. ArrayBuffer £ERNTF8E%
N,

3 4. L EEER 3

3 4 W%OLEER
3.1 4.1 LDR % HDR #iEE®&

MZ3K LDR Ef& %R HDR TR CRF HRG=E. LUTE2RIENE (Radiance) BIKIL:

function extractRadiance(exposures, crf) {
const width = exposures[0].width;
const height = exposures(0].height;

const radiance = new Float32Array(width * height * 3);

for (let i = 0; i < exposures.length; i++) {
const ev = exposures|[i].exposureValue;
const pixels = exposures|[i].data;
for (let j = 0; j < pixels.length; j += 4) {
const idx = Math.floor(j / 4) * 3;
for (let ¢ = 0; ¢ < 3; c++) {
pixels[j + c] / 255;

const g
const 1 = Math.log(crf.inverse(q) / ev + le-5);
radiance[idx + c] += Math.exp(1l);

}

}

return radiance;

}

~

R EIZ YIRS 5IA CRF R, BEeiiafERE, MEREHSKES, THEE EV RENTE:

®d CRF HMRTKE(E g BIAMRE, WESINTY, REEEER. ZELRFMBNKEE RV HEER,
REHMERE M.

3.2 4.2 Tone Mapping Operators SCI

Reinhard £/ TMO f&l88%, H JavaScript lR4s/9:

function reinhardTonemap(color, whitePoint = 1.0) {
const luminance = 0.2126 % color(0] + 0.7152 * color[1] + 0.0722 * color(2];
const tonemappedL = luminance * (1.0 + luminance / (whitePoint * whitePoint)) /
«— (1.0 + luminance);
const scale = tonemappedL / Math.max(luminance, 1e-5);
return |

Math.pow(color (0] * scale, 1/2.2),

Math.pow(color([1] * scale, 1/2.2),

9

©

3 4. L EEER 4

Math.pow(color (2] * scale, 1/2.2)
]

RETERAGCRENZEY (f£A BT.709 /&), WA Reinhard ARESE Ly = L (1 + Lu/L7,) /(1 +
L,), ¥ L, AR, EHETIAE RGB @@, &5 gamma RIEE sRGB, ZEA2F/BIERN, BHRFap
ST,

I FEE TMO, WebGL Fragment Shader E&34:

precision highp float;
uniform sampler2D hdrTexture;
uniform float whitePoint;

varying vec2 vUv;

vec3d reinhard(vec3 color, float w) {

float 1 = dot(color, vec3(0.2126, 0.7152, 0.0722));

float t =1 % (1.0 + 1/ (w=*w)) / (1.0 + 1);

return pow(color * (t / max(1l, 0.0001)), vec3(1.0/2.2));
1

void main() {
vecd hdrColor = texture2D(hdrTexture, vUv).rgb;
gl_FragColor = vec4(reinhard(hdrColor, whitePoint), 1.0);
}

It shader 7£ GPU L& &E#H 1T tonemapping. precision highp float BEEREZS; dot HBERE;
Reinhard K #5 JS lR—E; SOBXREERY gamma KIEEIE, uniform whitePoint A IFSLESAT,
Drago /@ TMO FERREX LS, FEaatbins,

3.3 4.3 ZBXRE

Exposure Fusion it HE=MEm/ME:

function exposureFusion(images) {

const weights = new Float32Array(images[0].data.length / 4 * 3);
/] TEBEME. MHE. BXANE (HEAT)
/...
const fused = new Float32Array(weights.length);
for (let i = 0; i < images.length; i++) {

const imgData = images[i].data;

for (let j = 0; j < weights.length; j++) {

fused[j] += imgData[j] * weights([j];

kil

4 5. TRERGIHE

1
1
return fused.map((w, i) => w / Math.max(weights[i], 1e-5));

13}

BHRZMMRER, REF—K. ZEERREEFENXE, BRERNF.

4 5. sERRGIHE

41 5.1 8201 HDR &2

BWE—N 4 LERE, EREBNBIRM Canvas ik, ZORTE: MNE .hdr — f#S Float32 — WebGL
tonemapping — 4% LDR i,

42 52 24k 2B HDR 4giE2S

T RINEEEESEGREES. TMO S2EUBRH PNG Sih. 1H8EMIXER Chrome 7 4K HDR LiX 60fps.

4.3 5.3 EREINESR

7 React ¥t WebGL AfF, A useRef 48 Canvas, %#F Three.js HDR FiENLE,

5 6. eAkEFISMKL
5.1 6.1 GPU X5 Compute Shaders

WebGL Zi@EERIM2 P TMO; WebGPU K5I NFEE Compute Shaders, %#5F FP16 1%

5.2 6.2 H28F>)1g5g

TensorFlow.js AN HDR B #=RIEE

import # as tf from 'atensorflow/tfjs’;

async function enhanceHDR(inputTensor) {
const model = await tf.loadLayersModel('model.json"');
const enhanced = model.predict(inputTensor.expandDims(0));

return enhanced.dataSync();

}

MEFNGARE, WNKEFUNIEEE L. %7557 B CNN ZIERIREY, RAATRE,

6 7. ERER[ISHA 6

5.3 6.3 BahisS PWA ik

WebAssembly i&id Emscripten &% C++ TMO, 125 5 Zi&RkE,

54 6.4 FRMESHERAR

MR A EFET Polyfill BBR; KERFEHRAIRGE: ZR1THEIE Float32 i,

6 7. KEREHISKA

R MILEA Canvas S HDR s, IRABF BHF. X 5IZEEM WebGL TMO, SKIMKHEHEEE,
HDRIPS #iE&IKan1ELe#t & SDR i T B,

7 8 GEEE

JavaScript &% WebGL #1 Typed Arrays, BREMUEIAEFZ HDR 418, MEIEM#ISEI GPU tonemap-
ping M1k,

7.1 8.2 kK%

AVIF HDR #&z(F0 WebNN BEHILEFGHERNN E2ERER:, HDR £ APl #5B 8 R

7.2 83115h5H
WDEERFAXABHFEM, Tk GitHub TE, HHERFMAAER.

8 MR
8.1 A =EABEEE

GitHub: github.com/example/js-hdr-processors

8.2 B.&ZEAIR

Reinhard B9 {High Dynamic Range Imaging) E#EeEM; Khronos WebGL Samples & shader i~
f5l; HDRIPS #iEse AT E &N,

8.3 C. RNERXR

TMO: Tone Mapping Operator; CRF: Camera Response Function,

8 MF

8.4 D.EMHZE

v1.0: #iR%&%, #F Reinhard TMO,

